@inproceedings{FingerKhalsaKreyeretal.2019, author = {Finger, Felix and Khalsa, R. and Kreyer, J{\"o}rg and Mayntz, Joscha and Braun, Carsten and Dahmann, Peter and Esch, Thomas and Kemper, Hans and Schmitz, O. and Bragard, Michael}, title = {An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft}, series = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, pages = {15 Seiten}, year = {2019}, abstract = {In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented.}, language = {en} } @article{SchaelAtanasyanBerdugoetal.2019, author = {Schael, S. and Atanasyan, A. and Berdugo, J. and Bretz, T. and Czupalla, Markus and Dachwald, Bernd and Doetinchem, P. von and Duranti, M. and Gast, H. and Karpinski, W. and Kirn, T. and L{\"u}belsmeyer, K. and Ma{\~n}a, C. and Marrocchesi, P.S. and Mertsch, P. and Moskalenko, I.V. and Schervan, T. and Schluse, M. and Schr{\"o}der, K.-U. and Schultz von Dratzig, A. and Senatore, C. and Spies, L. and Wakely, S.P. and Wlochal, M. and Uglietti, D. and Zimmermann, J.}, title = {AMS-100: The next generation magnetic spectrometer in space - An international science platform for physics and astrophysics at Lagrange point 2}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {944}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {162561}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9002}, doi = {10.1016/j.nima.2019.162561}, year = {2019}, language = {en} } @incollection{WolffSeefeldtBaueretal.2014, author = {Wolff, Nino and Seefeldt, Patric and Bauer, Wolfgang and Fiebig, Christopher and Gerding, Patrick and Parow-Souchon, Kai and Pongs, Anna and Reiffenrath, Matti and Ziemann, Thomas}, title = {Alternative application of solar sail technology}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, doi = {10.1007/978-3-642-34907-2_23}, pages = {351 -- 365}, year = {2014}, abstract = {The development of Gossamer sail structures for solar sails contributes to a large field of future space applications like thin film solar generators, membrane antennas and drag sails. The focus of this paper is the development of a drag sail based on solar sail technology that could contribute to a reduction of space debris in low Earth orbits. The drag sail design and its connections to solar sail development, a first test on a sounding rocket, as well as the ongoing integration of the drag sail into a triple CubeSat is presented.}, language = {en} } @article{Maurischat2022, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, series = {Journal of Number Theory}, volume = {240}, journal = {Journal of Number Theory}, publisher = {Elsevier}, address = {Orlando, Fla.}, issn = {0022-314X}, doi = {10.1016/j.jnt.2022.01.006}, pages = {145 -- 162}, year = {2022}, language = {en} } @article{Maurischat2021, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, pages = {1 -- 12}, year = {2021}, language = {en} } @article{GoettenHavermannBraunetal.2020, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Airfoil drag at low-to-medium reynolds numbers: A novel estimation method}, series = {AIAA Journal}, volume = {58}, journal = {AIAA Journal}, number = {7}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-385X}, doi = {10.2514/1.J058983}, pages = {2791 -- 2805}, year = {2020}, abstract = {This paper presents a novel method for airfoil drag estimation at Reynolds numbers between 4×10⁵ and 4×10⁶. The novel method is based on a systematic study of 40 airfoils applying over 600 numerical simulations and considering natural transition. The influence of the airfoil thickness-to-chord ratio, camber, and freestream Reynolds number on both friction and pressure drag is analyzed in detail. Natural transition significantly affects drag characteristics and leads to distinct drag minima for different Reynolds numbers and thickness-to-chord ratios. The results of the systematic study are used to develop empirical correlations that can accurately predict an airfoil drag at low-lift conditions. The new approach estimates a transition location based on airfoil thickness-to-chord ratio, camber, and Reynolds number. It uses the transition location in a mixed laminar-turbulent skin-friction calculation, and corrects the skin-friction coefficient for separation effects. Pressure drag is estimated separately based on correlations of thickness-to-chord ratio, camber, and Reynolds number. The novel method shows excellent accuracy when compared with wind-tunnel measurements of multiple airfoils. It is easily integrable into existing aircraft design environments and is highly beneficial in the conceptual design stage.}, language = {en} } @incollection{BallmannBouckeBraun2003, author = {Ballmann, Josef and Boucke, Alexander and Braun, Carsten}, title = {Aeroelastic sensitivity in the transonic regime}, series = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, booktitle = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, publisher = {Kluwer Academic}, address = {Dordrecht}, isbn = {978-94-010-3998-7}, pages = {225 -- 236}, year = {2003}, language = {en} } @article{GerhardtKramer1985, author = {Gerhardt, Hans Joachim and Kramer, C.}, title = {Aerodynamsiche RA-Optimierung}, series = {Zentralblatt fuer Industriebau. 31 (1985), H. 5}, journal = {Zentralblatt fuer Industriebau. 31 (1985), H. 5}, isbn = {0044-4227}, pages = {358 -- 362}, year = {1985}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Aerodynamic multi point design challenge}, series = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_4}, pages = {53 -- 67}, year = {1997}, abstract = {In the chapter "Son of Concorde, a Technology Challenge" one of the new challenges for a Supersonic Commercial Transport (SCT) is multi-point design for the four main design points: - supersonic cruise - transonic cruise - take-off and landing - transonic acceleration.}, language = {en} } @article{GoettenHavermannBraunetal.2021, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach}, series = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, journal = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2021-1535}, pages = {1 -- 12}, year = {2021}, language = {en} }