@article{SchollMoraisGabrieletal.2017, author = {Scholl, Fabio and Morais, Paulo and Gabriel, Rayla and Sch{\"o}ning, Michael Josef and Siqueira, Jose Roberto, Jr. and Caseli, Luciano}, title = {Carbon nanotubes arranged as smart interfaces in lipid Langmuir-Blodgett films enhancing the enzymatic properties of penicillinase for biosensing applications}, series = {Applied Materials \& Interfaces}, volume = {9}, journal = {Applied Materials \& Interfaces}, number = {36}, publisher = {ACS}, address = {Washington}, issn = {1944-8252}, doi = {10.1021/acsami.7b08095}, pages = {31054 -- 31066}, year = {2017}, abstract = {In this paper, carbon nanotubes (CNTs) were incorporated in penicillinase-phospholipid Langmuir and Langmuir-Blodgett (LB) films to enhance the enzyme catalytic properties. Adsorption of the penicillinase and CNTs at dimyristoylphosphatidic acid (DMPA) monolayers at the air-water interface was investigated by surface pressure-area isotherms, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to solid supports through the LB technique, forming mixed DMPA-CNTs-PEN films, which were investigated by quartz crystal microbalance, vibrational spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV-vis spectroscopy and the feasibility of the supramolecular device nanostructured as ultrathin films were essayed in a capacitive electrolyte-insulator-semiconductor (EIS) sensor device. The presence of CNTs in the enzyme-lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks, showing increased values of activity. Viability as penicillin sensor was demonstrated with capacitance/voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results may be related not only to the nanostructured system provided by the film, but also to the synergism between the compounds on the active layer, leading to a surface morphology that allowed a fast analyte diffusion because of an adequate molecular accommodation, which also preserved the penicillinase activity. This work therefore demonstrates the feasibility of employing LB films composed of lipids, CNTs, and enzymes as EIS devices for biosensing applications.}, language = {en} } @inproceedings{BirgelLeschingerWegmannetal.2017, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in shoulder area via an OpenSim based computer calculation}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {116 -- 117}, year = {2017}, language = {en} } @inproceedings{JabbariBhattaraiAndingetal.2017, author = {Jabbari, Medisa and Bhattarai, Aroj and Anding, Ralf and Staat, Manfred}, title = {Biomechanical simulation of different prosthetic meshes for repairing uterine/vaginal vault prolapse}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {118 -- 119}, year = {2017}, language = {en} } @inproceedings{KesslerBalcGebhardtetal.2017, author = {Kessler, Julia and Balc, Nicolae and Gebhardt, Andreas and Abbas, Karim}, title = {Basic research on lattice structures focused on the reliance of the cross sectional area and additional coatings}, series = {The 4th International Conference on Computing and Solutions in Manufacturing Engineering 2016 - CoSME'16}, booktitle = {The 4th International Conference on Computing and Solutions in Manufacturing Engineering 2016 - CoSME'16}, edition = {Vol. 94}, doi = {10.1051/matecconf/20179403008}, pages = {7 S.}, year = {2017}, language = {en} } @inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @article{ValeroBung2017, author = {Valero, Daniel and Bung, Daniel Bernhard}, title = {Artificial Neural Networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe}, series = {Journal of Hydro-environment Research}, volume = {19}, journal = {Journal of Hydro-environment Research}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2017.08.004}, pages = {150 -- 159}, year = {2017}, language = {en} } @inproceedings{ThurnGebhardt2017, author = {Thurn, Laura and Gebhardt, Andreas}, title = {Arousing Enthusiasm for STEM: Teaching 3D Printing Technology}, series = {Conference Proceedings: New Perspectives in Science Education}, booktitle = {Conference Proceedings: New Perspectives in Science Education}, publisher = {liberiauniversitaria.it}, address = {Padua}, isbn = {978-88-6292-847-2}, pages = {87 -- 92}, year = {2017}, language = {en} } @inproceedings{SauerbornLiebenstundRaueetal.2017, author = {Sauerborn, Markus and Liebenstund, Lena and Raue, Markus and Mang, Thomas and Herrmann, Ulf and Dueing, Andreas}, title = {Analytic method for material aging and quality analyzing to forecast long time stability of plastic micro heliostat components}, series = {AIP Conference Proceedings}, volume = {1850}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4984388}, pages = {030045-1 -- 030045-8}, year = {2017}, language = {en} } @article{ButenwegRosinHoller2017, author = {Butenweg, Christoph and Rosin, Julia and Holler, Stefan}, title = {Analysis of cylindrical granular material silos under seismic excitation}, series = {Buildings}, volume = {7}, journal = {Buildings}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings7030061}, pages = {1 -- 12}, year = {2017}, abstract = {Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil-structure interaction effects are taken into account.}, language = {en} } @inproceedings{Pfaff2017, author = {Pfaff, Raphael}, title = {Analysis of Big Data Streams to obtain Braking Reliability Information for Train Protection systems}, series = {Asia-Pacific Conference of the Prognostics and Health Management Society}, booktitle = {Asia-Pacific Conference of the Prognostics and Health Management Society}, pages = {1 -- 7}, year = {2017}, language = {en} }