@inproceedings{ChristianMontagSchubaetal.2018, author = {Christian, Esser and Montag, Tim and Schuba, Marko and Allhof, Manuel}, title = {Future critical infrastructure and security - cyberattacks on charging stations}, series = {31st International Electric Vehicle Symposium \& Exhibition and International Electric Vehicle Technology Conference (EVS31 \& EVTeC 2018)}, booktitle = {31st International Electric Vehicle Symposium \& Exhibition and International Electric Vehicle Technology Conference (EVS31 \& EVTeC 2018)}, publisher = {Society of Automotive Engineers of Japan (JSAE)}, address = {Tokyo}, isbn = {978-1-5108-9157-9}, pages = {665 -- 671}, year = {2018}, language = {en} } @article{RuppSchulzeKuperjans2018, author = {Rupp, Matthias and Schulze, Sven and Kuperjans, Isabel}, title = {Comparative life cycle analysis of conventional and hybrid heavy-duty trucks}, series = {World electric vehicle journal}, volume = {9}, journal = {World electric vehicle journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2032-6653}, doi = {10.3390/wevj9020033}, pages = {Article No. 33}, year = {2018}, abstract = {Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle's environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.}, language = {en} } @inproceedings{GoettenFingerBraunetal.2019, author = {G{\"o}tten, Falk and Finger, Felix and Braun, Carsten and Havermann, Marc and Bil, C. and Gomez, F.}, title = {Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles}, series = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, booktitle = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-13-3305-7}, doi = {10.1007/978-981-13-3305-7_109}, pages = {1365 -- 1381}, year = {2019}, abstract = {The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg-1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV's maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations.}, language = {en} } @inproceedings{FingerGoettenBraunetal.2019, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten and Bil, C.}, title = {On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems}, series = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, booktitle = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-13-3305-7}, doi = {10.1007/978-981-13-3305-7_99}, pages = {1261 -- 1272}, year = {2019}, abstract = {A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology.}, language = {en} } @inproceedings{PfaffSchmidtWilbringetal.2019, author = {Pfaff, Raphael and Schmidt, Bernd and Wilbring, Daniela and Franzen, Julian}, title = {Wagon4.0 - the smart wagon for improved integration into Industry 4.0 plants}, series = {Proceedings of the International Heavy Haul Association STS Conference 2019}, booktitle = {Proceedings of the International Heavy Haul Association STS Conference 2019}, pages = {7 Seiten}, year = {2019}, abstract = {In many instances, freight vehicles exchange load or information with plants that are or will soon be Industry4.0 plants. The Wagon4.0 concept, as developed in close cooperation with e.g. port or mine operations, offers a maximum in railway operational efficiency while providing strong business cases already in the respective plant interaction. The Wagon4.0 consists of main components, a power supply, data network, sensors, actuators and an operating system, the so called WagonOS. The Wagon OS is implemented in a granular, self-sufficient manner, to allow basic features such as WiFi-Mesh and train christening in remote areas without network connection. Furthermore, the granularity of the operating system allows to extend the familiar app concept to freight rail rolling stock, making it possible to use specialised actuators for certain applications, e.g. an electrical parking brake or an auxiliary drive. In order to facilitate migration to the Wagon4.0 for existing fleets, a migration concept featuring five levels of technical adaptation was developed. The present paper investigates the benefits of Wagon4.0-implementations for the particular challenges of heavy haul operations by focusing on train christening, ep-assisted braking, autonomous last mile and traction boost operation as well as improved maintenance schedules}, language = {en} } @misc{MachadoDahmannKeimeretal.2020, author = {Machado, Patricia Almeida and Dahmann, Peter and Keimer, Jona and Saretzki, Charlotte and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Stress profile and individual workload monitoring in general aviation pilots - an experiment's setting}, series = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, journal = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, doi = {10.55225/hppa.156}, year = {2020}, language = {en} } @inproceedings{ThomaFisherBertrandetal.2020, author = {Thoma, Andreas and Fisher, Alex and Bertrand, Olivier and Braun, Carsten}, title = {Evaluation of possible flight strategies for close object evasion from bumblebee experiments}, series = {Living Machines 2020: Biomimetic and Biohybrid Systems}, booktitle = {Living Machines 2020: Biomimetic and Biohybrid Systems}, editor = {Vouloutsi, Vasiliki and Mura, Anna and Tauber, Falk and Speck, Thomas and Prescott, Tony J. and Verschure, Paul F. M. J.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64312-6}, doi = {10.1007/978-3-030-64313-3_34}, pages = {354 -- 365}, year = {2020}, language = {en} } @article{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles}, series = {SAE International Journal of Commercial Vehicles}, volume = {13}, journal = {SAE International Journal of Commercial Vehicles}, number = {2}, publisher = {SAE International}, address = {Warrendale, Pa.}, issn = {1946-3928}, doi = {10.4271/02-13-02-0009}, pages = {129 -- 143}, year = {2020}, abstract = {The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile. In addition to the use of road gradient profile data, an evaluation of the continuously recorded distance signal, which represents the distance between the test vehicle and the road user ahead, is included in the prediction model. Using a Fourier analysis, the trajectory of the vehicle speed is determined for a defined prediction horizon. To verify the method, a holistic simulation model consisting of several hierarchically structured submodels has been developed. A map-based submodel of a combustion engine is used to determine the EGR and EAT exhaust gas mass flows and exhaust gas temperature profiles. All simulation results are validated on the basis of the recorded vehicle and environmental data. Deviations from the predicted values are analyzed and discussed.}, language = {en} } @inproceedings{DinghoferHartung2020, author = {Dinghofer, Kai and Hartung, Frank}, title = {Analysis of Criteria for the Selection of Machine Learning Frameworks}, series = {2020 International Conference on Computing, Networking and Communications (ICNC)}, booktitle = {2020 International Conference on Computing, Networking and Communications (ICNC)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ICNC47757.2020.9049650}, pages = {373 -- 377}, year = {2020}, abstract = {With the many achievements of Machine Learning in the past years, it is likely that the sub-area of Deep Learning will continue to deliver major technological breakthroughs [1]. In order to achieve best results, it is important to know the various different Deep Learning frameworks and their respective properties. This paper provides a comparative overview of some of the most popular frameworks. First, the comparison methods and criteria are introduced and described with a focus on computer vision applications: Features and Uses are examined by evaluating papers and articles, Adoption and Popularity is determined by analyzing a data science study. Then, the frameworks TensorFlow, Keras, PyTorch and Caffe are compared based on the previously described criteria to highlight properties and differences. Advantages and disadvantages are compared, enabling researchers and developers to choose a framework according to their specific needs.}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, abstract = {In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-SuiteĀ® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.}, language = {en} }