@inproceedings{RajanButenwegDalgueretal.2017, author = {Rajan, S. and Butenweg, Christoph and Dalguer, L. A. and An, J. H. and Renault, P. and Klinkel, S.}, title = {Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013}, series = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, year = {2017}, language = {en} } @inproceedings{RajanKubalskiAltayetal.2017, author = {Rajan, Sreelakshmy and Kubalski, Thomas and Altay, Okyay and Dalguer, Luis A and Butenweg, Christoph}, title = {Multi-dimensional fragility analysis of a RC building with components using response surface method}, series = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, booktitle = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, publisher = {International Assn for Structural Mechanics in Reactor Technology (IASMiRT)}, address = {Raleigh, USA}, isbn = {9781510856776}, pages = {3126 -- 3135}, year = {2017}, abstract = {Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples.}, language = {en} } @article{GiresiniSassuButenwegetal.2017, author = {Giresini, Linda and Sassu, Mauro and Butenweg, Christoph and Alecci, Valerio and De Stefano, Mario}, title = {Vault macro-element with equivalent trusses in global seismic analyses}, series = {Earthquakes and Structures}, volume = {12}, journal = {Earthquakes and Structures}, number = {4}, publisher = {Techno-Press}, address = {Taejŏn}, issn = {2092-7614 (Print)}, doi = {10.12989/eas.2017.12.4.409}, pages = {409 -- 423}, year = {2017}, abstract = {This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports.}, language = {en} } @article{EdipSesovButenwegetal.2018, author = {Edip, K. and Sesov, V. and Butenweg, Christoph and Bojadjieva, J.}, title = {Development of coupled numerical model for simulation of multiphase soil}, series = {Computers and Geotechnics}, volume = {96}, journal = {Computers and Geotechnics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0266-352X}, doi = {10.1016/j.compgeo.2017.08.016}, pages = {118 -- 131}, year = {2018}, abstract = {In this paper, a coupled multiphase model considering both non-linearities of water retention curves and solid state modeling is proposed. The solid displacements and the pressures of both water and air phases are unknowns of the proposed model. The finite element method is used to solve the governing differential equations. The proposed method is demonstrated through simulation of seepage test and partially consolidation problem. Then, implementation of the model is done by using hypoplasticity for the solid phase and analyzing the fully saturated triaxial experiments. In integration of the constitutive law error controlling is improved and comparisons done accordingly. In this work, the advantages and limitations of the numerical model are discussed.}, language = {en} } @article{MichelButenwegKinkel2018, author = {Michel, Philipp and Butenweg, Christoph and Kinkel, Sven}, title = {Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading}, series = {Soil Dynamics and Earthquake Engineering}, volume = {109}, journal = {Soil Dynamics and Earthquake Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0267-7261}, doi = {10.1016/j.soildyn.2018.03.009}, pages = {299 -- 311}, year = {2018}, abstract = {In recent years, many onshore wind turbines are erected in seismic active regions and on soils with poor load bearing capacity, where pile grids are inevitable to transfer the loads into the ground. In this contribution, a realistic multi pile grid is designed to analyze the dynamics of a wind turbine tower including frequency dependent soil-structure-interaction. It turns out that different foundations on varying soil configurations heavily influence the vibration response. While the vibration amplitude is mostly attenuated, certain unfavorable combinations of structure and soil parameters lead to amplification in the range of the system's natural frequencies. This testifies the need for overall dynamic analysis in the assessment of the dynamic stability and the holistic frequency tuning of the turbines.}, language = {en} } @inproceedings{RosinButenwegBoesenetal.2018, author = {Rosin, Julia and Butenweg, Christoph and Boesen, Niklas and Gellert, Christoph}, title = {Evaluation of the Seismic Behavior of a Modern URM Building During the 2012 Northern Italy Earthquakes}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 12}, year = {2018}, language = {en} } @inproceedings{AnicPenavaGuljasetal.2018, author = {Anic, Filip and Penava, Davorin and Guljas, Ivica and Sarhosis, Vasilis and Abrahamczyk, Lars and Butenweg, Christoph}, title = {The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 11}, year = {2018}, language = {en} } @inproceedings{MilkovaRosinButenwegetal.2018, author = {Milkova, Kristina and Rosin, Julia and Butenweg, Christoph and Dumova-Jovanoska, Elena}, title = {Development of Seismic Vulnerability Curves for Region Specific Masonry Buildings}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 10}, year = {2018}, language = {en} } @inproceedings{SchmittRosinButenweg2018, author = {Schmitt, Timo and Rosin, Julia and Butenweg, Christoph}, title = {Seismic Impact And Design Of Buried Pipelines}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 12}, year = {2018}, abstract = {Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety but also for the maintenance of the supply infrastructure after an earthquake. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. However, the presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, backfill height and synthetic displacement time histories. The interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs and the propagating wave is simulated affecting the pipeline punctually, independently in time and space. Special attention is given to long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which during the earthquake lead to high bending stresses in the cross-section of the pipeline. Finally, an interpretation of the results and recommendations are given for the most critical parameters.}, language = {en} } @inproceedings{MichelButenwegKlinkel2018, author = {Michel, Philipp and Butenweg, Christoph and Klinkel, Sven}, title = {Frequency Dependent Impedance Analysis of the Foundation-Soil-Systems of Onshore Wind Turbines}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 13}, year = {2018}, language = {en} }