@article{MarinkovićButenweg2022, author = {Marinković, Marko and Butenweg, Christoph}, title = {Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading}, series = {Construction and Building Materials}, volume = {318}, journal = {Construction and Building Materials}, number = {1}, editor = {Ford, Michael C.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-0526}, doi = {10.1016/j.conbuildmat.2021.126041}, year = {2022}, abstract = {Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated.}, language = {en} } @article{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Latest findings on the behaviour factor q for the seismic design of URM buildings}, series = {Bulletin of Earthquake Engineering}, volume = {20}, journal = {Bulletin of Earthquake Engineering}, number = {11}, editor = {Ansal, Atilla}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-1456}, doi = {10.1007/s10518-022-01419-7}, pages = {5797 -- 5848}, year = {2022}, abstract = {Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20-0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0-3.0 are proposed.}, language = {en} } @article{ButenwegMarinkovicPhlippetal.2022, author = {Butenweg, Christoph and Marinkovic, Marko and Phlipp, Michel and Lins, Robin and Renaut, Philipp}, title = {Isolierung und BIM-basiertes Bauwerksmonitoring des neuen Geb{\"a}udekomplexes f{\"u}r das BioSense-Institut in Novi Sad, Serbien}, series = {Bauingenieur}, volume = {97}, journal = {Bauingenieur}, number = {6}, editor = {Haghsheno, Shervin}, publisher = {VDI Fachmedien}, address = {D{\"u}sseldorf}, issn = {1436-4867}, doi = {10.37544/0005-6650-2022-06-28}, pages = {S3 -- S5}, year = {2022}, abstract = {Im Norden von Serbien erfolgt in Novi Sad der Neubau eines modernen Forschungsgeb{\"a}udes f{\"u}r das BioSense-Institut mit finanzieller Unterst{\"u}tzung durch die Eu-rop{\"a}ische Union. Der Geb{\"a}udeteil mit Laboren wird zum Schutz und zur Sicherstellung des reibungslosen Betriebs der sensiblen und kapitalintensiven technischen Einbauten mit ei-ner Erdbebenisolierung mit integrierter K{\"o}rperschallisolation versehen. Zus{\"a}tzlich wird der entkoppelte Laborteil des For-schungsgeb{\"a}udes mit einem BIM-basierten Bauwerksmonito-ring versehen, um {\"A}nderungen des Geb{\"a}udezustands jederzeit abfragen und beurteilen zu k{\"o}nnen.}, language = {de} } @article{KubalskiButenwegElDeib2022, author = {Kubalski, Thomas and Butenweg, Christoph and El-Deib, Khaled}, title = {Vereinfachte Ber{\"u}cksichtigung der Rahmentragwirkung in Mauerwerksgeb{\"a}uden}, series = {Bautechnik}, volume = {99}, journal = {Bautechnik}, number = {12}, editor = {Jesse, Dirk}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {0932-8351}, doi = {10.1002/bate.202200081}, pages = {865 -- 928}, year = {2022}, abstract = {Aufgrund der gestiegenen Anforderungen durch h{\"o}here Ein-wirkungen aus Wind und Erdbeben ist eine Verbesserung und Optimierung der Berechnungs- und Bemessungsans{\"a}tze f{\"u}r Mauerwerksbauten erforderlich. Eine bessere Ausnutzung der Tragwerksreserven ist durch die Ber{\"u}cksichtigung der Rah-mentragwirkung mit einer Aktivierung der Deckenscheiben in den Rechenmodellen m{\"o}glich, die in der Praxis aufgrund der Komplexit{\"a}t der Wand-Decken-Interaktion bislang nicht aus-genutzt wird. Im vorliegenden Aufsatz wird ein vereinfachter Ansatz auf Grundlage der mitwirkenden Plattenbreite von Schubw{\"a}nden aus Mauerwerk vorgestellt, der die wesentli-chen Einfl ussfaktoren in parametrisierten Tabellen erfasst. Damit steht den Tragwerksplanern ein einfach anwendbares Werkzeug zur Verf{\"u}gung, um die Rahmentragwirkung in der Mauerwerksbemessung anzusetzen.}, language = {de} } @inproceedings{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Behaviour factor q for the seismic design of URM buildings}, series = {The Third European Conference on Earthquake Engineering and Seismology September 4 - September 9, 2022, Bucharest}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology September 4 - September 9, 2022, Bucharest}, editor = {Arion, Christian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {1184 -- 1194}, year = {2022}, abstract = {Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed.}, language = {en} } @article{MarinkovicButenweg2022, author = {Marinkovic, Marko and Butenweg, Christoph}, title = {Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames}, series = {Engineering Structures}, volume = {272}, journal = {Engineering Structures}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.114959}, pages = {18 Seiten}, year = {2022}, abstract = {Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill's and frame's geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames.}, language = {en} } @inproceedings{BlankeSchmidtGoettscheetal.2022, author = {Blanke, Tobias and Schmidt, Katharina S. and G{\"o}ttsche, Joachim and D{\"o}ring, Bernd and Frisch, J{\´e}r{\^o}me and van Treeck, Christoph}, title = {Time series aggregation for energy system design: review and extension of modelling seasonal storages}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {1, Article number: 17}, editor = {Weidlich, Anke and Neumann, Dirk and Gust, Gunther and Staudt, Philipp and Sch{\"a}fer, Mirko}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00208-5}, pages = {1 -- 14}, year = {2022}, abstract = {Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, "Time series aggregation for energy system design: Modeling seasonal storage", has developed a seasonal storage model to address this issue. Simultaneously, the paper "Optimal design of multi-energy systems with seasonal storage" has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.}, language = {en} }