@inproceedings{RajanKubalskiAltayetal.2017, author = {Rajan, Sreelakshmy and Kubalski, Thomas and Altay, Okyay and Dalguer, Luis A and Butenweg, Christoph}, title = {Multi-dimensional fragility analysis of a RC building with components using response surface method}, series = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, booktitle = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, publisher = {International Assn for Structural Mechanics in Reactor Technology (IASMiRT)}, address = {Raleigh, USA}, isbn = {9781510856776}, pages = {3126 -- 3135}, year = {2017}, abstract = {Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples.}, language = {en} } @inproceedings{BungValero2017, author = {Bung, Daniel Bernhard and Valero, Daniel}, title = {FlowCV - An open-source toolbox for computer vision applications in turbulent flows}, series = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, booktitle = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, issn = {2521-716X}, pages = {5356 -- 5365}, year = {2017}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} } @inproceedings{FunkeBeckmannAbanteriba2017, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1}, series = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, booktitle = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, isbn = {978-1-5108-5646-2}, pages = {262 -- 265}, year = {2017}, language = {en} } @inproceedings{BoesenRosinButenwegetal.2017, author = {Boesen, Niklas and Rosin, Julia and Butenweg, Christoph and Deichsel, Anne and Klinkel, Sven}, title = {Untersuchung vorhandenerTragreserven moderner unbewehrter Mauerwerksbauten}, series = {Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik}, booktitle = {Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik}, editor = {Zabel, Volkmar and Beinersdorf, Silke}, publisher = {Deutsche Gesellschaft f{\"u}r Erdbebeningenieurwesen und Baudynamik (DGEB) e.V.}, address = {Weimar}, isbn = {978-3-930108-13-5}, pages = {408 -- 418}, year = {2017}, language = {de} } @article{GiresiniSassuButenwegetal.2017, author = {Giresini, Linda and Sassu, Mauro and Butenweg, Christoph and Alecci, Valerio and De Stefano, Mario}, title = {Vault macro-element with equivalent trusses in global seismic analyses}, series = {Earthquakes and Structures}, volume = {12}, journal = {Earthquakes and Structures}, number = {4}, publisher = {Techno-Press}, address = {Taejŏn}, issn = {2092-7614 (Print)}, doi = {10.12989/eas.2017.12.4.409}, pages = {409 -- 423}, year = {2017}, abstract = {This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports.}, language = {en} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel Bernhard and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} } @inproceedings{ButenwegMarinkovićKubalskietal.2017, author = {Butenweg, Christoph and Marinković, Marko and Kubalski, Thomas and Fehling, Ekkehard and Pfetzing, Thomas and Meyer, Udo}, title = {Innovative Ans{\"a}tze f{\"u}r die seismische Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk}, series = {Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik}, booktitle = {Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik}, editor = {Zabel, Volkmar and Beinersdorf, Silke}, publisher = {Deutsche Gesellschaft f{\"u}r Erdbebeningenieurwesen und Baudynamik (DGEB) e.V.}, address = {Weimar}, isbn = {978-3-930108-13-5}, pages = {130 -- 145}, year = {2017}, language = {de} } @article{WoliszSchuetzBlankeetal.2017, author = {Wolisz, Henryk and Sch{\"u}tz, Thomas and Blanke, Tobias and Hagenkamp, Markus and Kohrn, Markus and Wesseling, Mark and M{\"u}ller, Dirk}, title = {Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets}, series = {Energy}, volume = {137}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.energy.2017.06.025}, pages = {715 -- 728}, year = {2017}, language = {en} } @article{ButenwegRosinHoller2017, author = {Butenweg, Christoph and Rosin, Julia and Holler, Stefan}, title = {Analysis of cylindrical granular material silos under seismic excitation}, series = {Buildings}, volume = {7}, journal = {Buildings}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings7030061}, pages = {1 -- 12}, year = {2017}, abstract = {Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil-structure interaction effects are taken into account.}, language = {en} }