@article{ChengWollertChenetal.2023, author = {Cheng, Chi-Tsun and Wollert, J{\"o}rg and Chen, Xi and Fapojuwo, Abraham O.}, title = {Guest Editorial : Circuits and Systems for Industry X.0 Applications}, series = {IEEE Journal on Emerging and Selected Topics in Circuits and Systems}, volume = {13}, journal = {IEEE Journal on Emerging and Selected Topics in Circuits and Systems}, edition = {2}, publisher = {IEEE}, address = {New York}, issn = {2156-3357 (Print)}, doi = {10.1109/JETCAS.2023.3278843}, pages = {457 -- 460}, year = {2023}, language = {en} } @inproceedings{NikolovskiLimpertNessauetal.2023, author = {Nikolovski, Gjorgji and Limpert, Nicolas and Nessau, Hendrik and Reke, Michael and Ferrein, Alexander}, title = {Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles}, series = {2023 IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {2023 IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {979-8-3503-4691-6 (Online)}, doi = {10.1109/IV55152.2023.10186806}, pages = {6 Seiten}, year = {2023}, abstract = {The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle's drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment.}, language = {en} } @inproceedings{EichenbaumNikolovskiMuelhensetal.2023, author = {Eichenbaum, Julian and Nikolovski, Gjorgji and M{\"u}lhens, Leon and Reke, Michael and Ferrein, Alexander and Scholl, Ingrid}, title = {Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations}, series = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, booktitle = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, publisher = {IEEE}, isbn = {979-8-3503-2069-5 (Online)}, doi = {10.1109/CASE56687.2023.10260526}, pages = {8 Seiten}, year = {2023}, abstract = {Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine.}, language = {en} } @inproceedings{ViehmannLimpertHofmannetal.2023, author = {Viehmann, Tarik and Limpert, Nicolas and Hofmann, Till and Henning, Mike and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Winning the RoboCup logistics league with visual servoing and centralized goal reasoning}, series = {RoboCup 2022}, booktitle = {RoboCup 2022}, editor = {Eguchi, Amy and Lau, Nuno and Paetzel-Pr{\"u}smann, Maike and Wanichanon, Thanapat}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-28468-7 (Print)}, doi = {https://doi.org/10.1007/978-3-031-28469-4_25}, pages = {300 -- 312}, year = {2023}, abstract = {The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot's perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019.}, language = {en} } @inproceedings{SchulteTiggesMatheisRekeetal.2023, author = {Schulte-Tigges, Joschua and Matheis, Dominik and Reke, Michael and Walter, Thomas and Kaszner, Daniel}, title = {Demonstrating a V2X enabled system for transition of control and minimum risk manoeuvre when leaving the operational design domain}, series = {HCII 2023: HCI in Mobility, Transport, and Automotive Systems}, booktitle = {HCII 2023: HCI in Mobility, Transport, and Automotive Systems}, editor = {Kr{\"o}mker, Heidi}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-35677-3 (Print)}, doi = {10.1007/978-3-031-35678-0_12}, pages = {200 -- 210}, year = {2023}, abstract = {Modern implementations of driver assistance systems are evolving from a pure driver assistance to a independently acting automation system. Still these systems are not covering the full vehicle usage range, also called operational design domain, which require the human driver as fall-back mechanism. Transition of control and potential minimum risk manoeuvres are currently research topics and will bridge the gap until full autonomous vehicles are available. The authors showed in a demonstration that the transition of control mechanisms can be further improved by usage of communication technology. Receiving the incident type and position information by usage of standardised vehicle to everything (V2X) messages can improve the driver safety and comfort level. The connected and automated vehicle's software framework can take this information to plan areas where the driver should take back control by initiating a transition of control which can be followed by a minimum risk manoeuvre in case of an unresponsive driver. This transition of control has been implemented in a test vehicle and was presented to the public during the IEEE IV2022 (IEEE Intelligent Vehicle Symposium) in Aachen, Germany.}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Carsten and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @inproceedings{ChavezBermudezWollert2022, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link}, series = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, booktitle = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, publisher = {IEEE}, isbn = {978-1-6654-1086-1}, doi = {10.1109/WFCS53837.2022.9779176}, pages = {4 Seiten}, year = {2022}, abstract = {The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies.}, language = {en} } @inproceedings{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Usage of digital twins for gamification applications in manufacturing}, series = {Procedia CIRP}, volume = {107}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.044}, pages = {675 -- 680}, year = {2022}, abstract = {Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers' actions. Game elements are selected according to the work task and users' preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting.}, language = {en} } @article{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results}, series = {International Journal of Human-Computer Studies}, volume = {165}, journal = {International Journal of Human-Computer Studies}, number = {Art. No. 102854}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1071-5819}, doi = {10.1016/j.ijhcs.2022.102854}, year = {2022}, abstract = {Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.}, language = {en} } @inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} }