@incollection{SchneiderWisselinkCzarneckietal.2024, author = {Schneider, Dominik and Wisselink, Frank and Czarnecki, Christian and N{\"o}lle, Nikolai}, title = {Benefits and framework conditions for information-driven business models concerning the Internet of Things}, series = {Digitalization in companies}, booktitle = {Digitalization in companies}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-39093-8 (Print)}, doi = {10.1007/978-3-658-39094-5_5}, pages = {59 -- 75}, year = {2024}, abstract = {In the context of the increasing digitalization, the Internet of Things (IoT) is seen as a technological driver through which completely new business models can emerge in the interaction of different players. Identified key players include traditional industrial companies, municipalities and telecommunications companies. The latter, by providing connectivity, ensure that small devices with tiny batteries can be connected almost anywhere and directly to the Internet. There are already many IoT use cases on the market that provide simplification for end users, such as Philips Hue Tap. In addition to business models based on connectivity, there is great potential for information-driven business models that can support or enhance existing business models. One example is the IoT use case Park and Joy, which uses sensors to connect parking spaces and inform drivers about available parking spaces in real time. Information-driven business models can be based on data generated in IoT use cases. For example, a telecommunications company can add value by deriving more decision-relevant information - called insights - from data that is used to increase decision agility. In addition, insights can be monetized. The monetization of insights can only be sustainable, if careful attention is taken and frameworks are considered. In this chapter, the concept of information-driven business models is explained and illustrated with the concrete use case Park and Joy. In addition, the benefits, risks and framework conditions are discussed.}, language = {en} } @masterthesis{Giernich2024, type = {Bachelor Thesis}, author = {Giernich, Marie}, title = {Zookunft: Zoo der Zukunft}, publisher = {FH Aachen}, address = {Aachen}, pages = {93 Seiten}, year = {2024}, abstract = {Inmitten globaler Natur- und Artenschutzherausforderungen ist die Transformation zoologischer Einrichtungen entscheidend. "Zookunft" pr{\"a}sentiert ein innovatives Konzept f{\"u}r ein Tropenhaus im K{\"o}lner Zoo, das Natur und Augmented Reality einzigartig verkn{\"u}pft. Ziel ist ein Raumkonzept, welches den Besucher:innen ein tiefes Verst{\"a}ndnis f{\"u}r die Fauna und Flora des s{\"u}dostasiatischen Regenwaldes vermitteln soll. Durch die geschickte Integration von Augmented Reality entsteht eine innovative Lern- und Erlebniswelt, die Umweltschutz- und Artenschutzbem{\"u}hungen unterst{\"u}tzt und nachhaltige Bildung f{\"o}rdert. Besuchende tauchen aktiv in die faszinierende Welt des Regenwaldes ein, wenn Natur und Augmented Reality eine immersive Umgebung schaffen. "Zookunft" soll als Vorreiter f{\"u}r Zooumgestaltungen dienen, Mensch und Natur verbinden und nachhaltige Bildung f{\"o}rdern. Ein Raum, der Naturerlebnisse und Technologie beeindruckend kombiniert.}, language = {de} } @incollection{Golland2024, author = {Golland, Alexander}, title = {Kommentierung von \S\S 6 bis 10 EKD-Datenschutzgesetz}, series = {EKD-Datenschutzgesetz. Datenschutzbestimmungen der evangelischen Kirche}, booktitle = {EKD-Datenschutzgesetz. Datenschutzbestimmungen der evangelischen Kirche}, editor = {Wagner, Ralph}, publisher = {Nomos}, address = {Baden-Baden}, isbn = {978-3-8487-8111-9}, pages = {153 -- 228}, year = {2024}, language = {de} } @techreport{BarnatArntzBerneckeretal.2024, type = {Working Paper}, author = {Barnat, Miriam and Arntz, Kristian and Bernecker, Andreas and Fissabre, Anke and Franken, Norbert and Goldbach, Daniel and H{\"u}ning, Felix and J{\"o}rissen, J{\"o}rg and Kirsch, Ansgar and Pettrak, J{\"u}rgen and Rexforth, Matthias and Josef, Rosenkranz and Terstegge, Andreas}, title = {Strategische Gestaltung von Studieng{\"a}ngen f{\"u}r die Zukunft: Ein kollaborativ entwickeltes Self-Assessment}, series = {Hochschulforum Digitalisierung - Diskussionspapier}, journal = {Hochschulforum Digitalisierung - Diskussionspapier}, publisher = {Stifterverband f{\"u}r die Deutsche Wissenschaft}, address = {Berlin}, issn = {2365-7081}, pages = {16 Seiten}, year = {2024}, abstract = {Das Diskussionspapier beschreibt einen Prozess an der FH Aachen zur Entwicklung und Implementierung eines Self-Assessment-Tools f{\"u}r Studieng{\"a}nge. Dieser Prozess zielte darauf ab, die Relevanz der Themen Digitalisierung, Internationalisierung und Nachhaltigkeit in Studieng{\"a}ngen zu st{\"a}rken. Durch Workshops und kollaborative Entwicklung mit Studiendekan:innen entstand ein Fragebogen, der zur Reflexion und strategischen Weiterentwicklung der Studieng{\"a}nge dient.}, language = {de} } @inproceedings{KramerBragardRitzetal.2024, author = {Kramer, Pia and Bragard, Michael and Ritz, Thomas and Ferfer, Ute and Schiffers, Tim}, title = {Visualizing, Enhancing and Predicting Students' Success through ECTS Monitoring}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578652}, pages = {5 Seiten}, year = {2024}, abstract = {This paper serves as an introduction to the ECTS monitoring system and its potential applications in higher education. It also emphasizes the potential for ECTS monitoring to become a proactive system, supporting students by predicting academic success and identifying groups of potential dropouts for tailored support services. The use of the nearest neighbor analysis is suggested for improving data analysis and prediction accuracy.}, language = {en} } @inproceedings{RuettersBragardDolls2024, author = {R{\"u}tters, Ren{\´e} and Bragard, Michael and Dolls, Sarah}, title = {The Inverted Rotary Pendulum: Facilitating Practical Teaching in Advanced Control Engineering}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578937}, pages = {5 Seiten}, year = {2024}, abstract = {This paper outlines a practical approach to teach control engineering principles, with an inverted rotary pendulum, serving as an illustrative example. It shows how the pendulum is embedded in an advanced course of control engineering. This approach is incorporated into a flipped-classroom concept, as well as classical teaching concepts, offering students practical experience in control engineering. In addition, the design of the pendulum is shown, using a Raspberry Pi as the target platform for Matlab Simulink. This pendulum can be used in the classroom to evaluate the controller design mentioned above. It is analysed if the use of the pendulum generates a deeper understanding of the learning contents.}, language = {en} } @inproceedings{BeckerBragard2024, author = {Becker, Tim and Bragard, Michael}, title = {Low-Voltage DC Training Lab for Electric Drives - Optimizing the Balancing Act Between High Student Throughput and Individual Learning Speed}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578902}, pages = {8 Seiten}, year = {2024}, abstract = {After a brief introduction of conventional laboratory structures, this work focuses on an innovative and universal approach for a setup of a training laboratory for electric machines and drive systems. The novel approach employs a central 48 V DC bus, which forms the backbone of the structure. Several sets of DC machine, asynchronous machine and synchronous machine are connected to this bus. The advantages of the novel system structure are manifold, both from a didactic and a technical point of view: Student groups can work on their own performance level in a highly parallelized and at the same time individualized way. Additional training setups (similar or different) can easily be added. Only the total power dissipation has to be provided, i.e. the DC bus balances the power flow between the student groups. Comparative results of course evaluations of several cohorts of students are shown.}, language = {en} } @incollection{Fissabre2024, author = {Fissabre, Anke}, title = {Eine moderne Sainte-Chapelle in K{\"o}ln. Otto Bartnings Stahlkirche auf der Pressa 1928}, series = {Baugedanken: Einsichten, Ansichten, Aussichten f{\"u}r Jan Pieper zum 80. Geburtstag}, booktitle = {Baugedanken: Einsichten, Ansichten, Aussichten f{\"u}r Jan Pieper zum 80. Geburtstag}, editor = {Naujokat, Anke and Hake, Verena and Schindler, Bruno and Sch{\"o}tten, Bj{\"o}rn}, publisher = {Geym{\"u}ller Verag f{\"u}r Architektur}, address = {Aachen}, isbn = {978-3-943164-87-9}, pages = {66 -- 81}, year = {2024}, language = {de} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael J. and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} } @article{ChwallekNawrathKrastinaetal.2024, author = {Chwallek, Constanze and Nawrath, Lara and Krastina, Anzelika and Bruksle, Ieva}, title = {Supportive research on sustainable entrepreneurship and business practices}, series = {SECA Sustainable Entrepreneurship for Climate Action}, journal = {SECA Sustainable Entrepreneurship for Climate Action}, number = {3}, publisher = {Lapland University of Applied Sciences Ltd}, address = {Rovaniemi}, isbn = {978-952-316-514-4 (pdf)}, issn = {2954-1654 (on-line publication)}, pages = {67 Seiten}, year = {2024}, language = {en} }