@inproceedings{DonnerRabelScholletal.2019, author = {Donner, Ralf and Rabel, Matthias and Scholl, Ingrid and Ferrein, Alexander and Donner, Marc and Geier, Andreas and John, Andr{\´e} and K{\"o}hler, Christian and Varga, Sebastian}, title = {Die Extraktion bergbaulich relevanter Merkmale aus 3D-Punktwolken eines untertagetauglichen mobilen Multisensorsystems}, series = {Tagungsband Geomonitoring}, booktitle = {Tagungsband Geomonitoring}, doi = {10.15488/4515}, pages = {91 -- 110}, year = {2019}, language = {de} } @incollection{Fissabre2024, author = {Fissabre, Anke}, title = {Eine moderne Sainte-Chapelle in K{\"o}ln. Otto Bartnings Stahlkirche auf der Pressa 1928}, series = {Baugedanken: Einsichten, Ansichten, Aussichten f{\"u}r Jan Pieper zum 80. Geburtstag}, booktitle = {Baugedanken: Einsichten, Ansichten, Aussichten f{\"u}r Jan Pieper zum 80. Geburtstag}, editor = {Naujokat, Anke and Hake, Verena and Schindler, Bruno and Sch{\"o}tten, Bj{\"o}rn}, publisher = {Geym{\"u}ller Verag f{\"u}r Architektur}, address = {Aachen}, isbn = {978-3-943164-87-9}, pages = {66 -- 81}, year = {2024}, language = {de} } @inproceedings{RingbeckBuxbaum2000, author = {Ringbeck, Thorsten and Buxbaum, Bernd}, title = {A highly integrated monolithic electro-optical PLL in CMOS-technology (PMD-PLL) for communication and ranging systems}, series = {Proceedings / OPTO 2000, 4th International Conference and Exhibition on Optoelectronics, Optical Sensors and Measuring Techniques : May 9 - 11, 2000, Erfurt Fair, Conference Centre}, booktitle = {Proceedings / OPTO 2000, 4th International Conference and Exhibition on Optoelectronics, Optical Sensors and Measuring Techniques : May 9 - 11, 2000, Erfurt Fair, Conference Centre}, publisher = {AMA Service GmbH}, address = {Wunsdorf}, pages = {235 -- 239}, year = {2000}, language = {en} } @inproceedings{Benner1989, author = {Benner, Joachim}, title = {Schwingungstechnische Dimensionierung von Maschinens{\"a}tzen mit Stromrichtermotoren}, series = {Antriebstechnisches Kolloquium '89 : Maschinen- und Anlagen{\"u}berwachung ; Elemente der Antriebstechnik im System ; neue Konzepte in der Antriebstechnik. - (Reihe IME-Leitfaden)}, booktitle = {Antriebstechnisches Kolloquium '89 : Maschinen- und Anlagen{\"u}berwachung ; Elemente der Antriebstechnik im System ; neue Konzepte in der Antriebstechnik. - (Reihe IME-Leitfaden)}, editor = {Peeken, Heinz}, publisher = {Verl. T{\"U}V Rheinland}, address = {K{\"o}ln}, issn = {3-88585-639-5}, pages = {309 -- 333}, year = {1989}, language = {de} } @article{Benner1989, author = {Benner, Joachim}, title = {Schwingungsbelastung von drehzahlgeregelten Antrieben mit Stromrichtermotoren}, series = {Antriebstechnik : Konstruktion, Entwicklung und Anwendung von Antrieben und Steuerungen ; Organ der Forschungsvereinigung Antriebstechnik e.V.}, volume = {28}, journal = {Antriebstechnik : Konstruktion, Entwicklung und Anwendung von Antrieben und Steuerungen ; Organ der Forschungsvereinigung Antriebstechnik e.V.}, number = {12}, publisher = {Vereinigte Fachverl.}, address = {Mainz}, issn = {0341-2652}, pages = {49 -- 54}, year = {1989}, language = {de} } @article{WiegnerVolkerMainzetal.2023, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and Loeken, Michael and H{\"u}ning, Felix}, title = {Energy analysis of a wireless sensor node powered by a Wiegand sensor}, series = {Journal of Sensors and Sensor Systems (JSSS)}, volume = {12}, journal = {Journal of Sensors and Sensor Systems (JSSS)}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-12-85-2023}, pages = {85 -- 92}, year = {2023}, abstract = {This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed.}, language = {en} } @techreport{EschFunkeRoosen2010, author = {Esch, Thomas and Funke, Harald and Roosen, Petra}, title = {SIoBiA - Safety Implications of Biofuels in Aviation}, publisher = {EASA}, address = {K{\"o}ln}, pages = {279 Seiten}, year = {2010}, abstract = {Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called "MOGAS" (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 \% volume per volume (v/v) (bio-)methanol or up to 5 \% v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline's chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots.}, language = {en} } @inproceedings{TamaldinMansorMatYaminetal.2022, author = {Tamaldin, Noreffendy and Mansor, Muhd Rizuan and Mat Yamin, Ahmad Kamal and Bin Abdollah, Mohd Fazli and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_50}, pages = {274 -- 278}, year = {2022}, abstract = {The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @inproceedings{RuettersBragardDolls2024, author = {R{\"u}tters, Ren{\´e} and Bragard, Michael and Dolls, Sarah}, title = {The Inverted Rotary Pendulum: Facilitating Practical Teaching in Advanced Control Engineering}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578937}, pages = {5 Seiten}, year = {2024}, abstract = {This paper outlines a practical approach to teach control engineering principles, with an inverted rotary pendulum, serving as an illustrative example. It shows how the pendulum is embedded in an advanced course of control engineering. This approach is incorporated into a flipped-classroom concept, as well as classical teaching concepts, offering students practical experience in control engineering. In addition, the design of the pendulum is shown, using a Raspberry Pi as the target platform for Matlab Simulink. This pendulum can be used in the classroom to evaluate the controller design mentioned above. It is analysed if the use of the pendulum generates a deeper understanding of the learning contents.}, language = {en} } @misc{FrauenrathPfeifferHezeletal.2012, author = {Frauenrath, Tobias and Pfeiffer, Harald and Hezel, Fabian and Dieringer, Matthias A. and Winter, Lukas and Gr{\"a}ßl, Andreas and Santoro, Davide and {\"O}zerdem, Celal and Renz, Wolfgang and Greiser, Andreas and Niendorf, Thoralf}, title = {Lessons learned from cardiac MRI at 7.0 T: LV function assessment at 3.0 T using local multi-channel transceiver coil arrays}, series = {2012 ISMRM Annual Meeting Proceedings}, journal = {2012 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2012}, abstract = {Cardiac MR (CMR) is of proven clinical value but also an area of vigorous ongoing research since image quality is not always exclusively defined by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Recent developments of CMR at 7.0 T have been driven by pioneering explorations into novel multichannel transmit and receive coil array technology to tackle the challenges B1+-field inhomogeneities, to offset specific-absorption rate (SAR) constraints and to reduce banding artifacts in SSFP imaging. For this study, recognition of the benefits and performance of local surface Tx/Rx-array structures recently established at 7.0 T inspired migration to 3.0 T, where RF inhomogeneities and SAR limitations encountered in routine clinical CMR, though somewhat reduced versus the 7.0 T situation, remain significant. For all these reasons, this study was designed to build and examine the feasibility of a local four channel Tx/Rx cardiac coil array for anatomical and functional cardiac imaging at 3.0 T. For comparison, a homebuilt 4 channel Rx cardiac coil array exhibiting the same geometry as the Tx/Rx coil and a Rx surface coil array were used.}, language = {en} }