@inproceedings{RajanButenwegDalgueretal.2017, author = {Rajan, S. and Butenweg, Christoph and Dalguer, L. A. and An, J. H. and Renault, P. and Klinkel, S.}, title = {Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013}, series = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, year = {2017}, language = {en} } @article{PoghossianWernerBuniatyanetal.2017, author = {Poghossian, Arshak and Werner, Frederik and Buniatyan, V. V. and Wagner, Torsten and Miamoto, K. and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk}, series = {Sensor and Actuators B: Chemical}, journal = {Sensor and Actuators B: Chemical}, number = {244}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.01.047}, pages = {1071 -- 1079}, year = {2017}, abstract = {The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems.}, language = {en} } @incollection{PoghossianSchoening2017, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Nanomaterial-Modified Capacitive Field-Effect Biosensors}, series = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, booktitle = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, publisher = {Springer}, address = {Berlin, Heidelberg}, doi = {10.1007/5346_2017_2}, pages = {1 -- 25}, year = {2017}, abstract = {The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte-insulator-semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing.}, language = {en} } @article{PilasYaziciSelmeretal.2017, author = {Pilas, Johanna and Yazici, Yasemen and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate}, series = {Electrochimica Acta}, volume = {251}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.07.119}, pages = {256 -- 262}, year = {2017}, abstract = {The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4\% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided.}, language = {en} } @incollection{PieperWaehlisch2017, author = {Pieper, Martin and W{\"a}hlisch, Georg}, title = {Mehrwert von E-Learning durch f{\"a}cher{\"u}bergreifenden Einsatz}, series = {Teaching is Touching the Future \& ePS 2016 - Kompetenzorientiertes Lehren, Lernen und Pr{\"u}fen}, booktitle = {Teaching is Touching the Future \& ePS 2016 - Kompetenzorientiertes Lehren, Lernen und Pr{\"u}fen}, publisher = {UVW Universit{\"a}tsverlag Webler}, address = {Bielefeld}, isbn = {978-3-946017-05-9}, pages = {193 -- 196}, year = {2017}, language = {de} } @book{Pieper2017, author = {Pieper, Martin}, title = {Mathematische Optimierung: Eine Einf{\"u}hrung in die kontinuierliche Optimierung mit Beispielen}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, isbn = {978-3-658-16975-6}, doi = {10.1007/978-3-658-16975-6}, pages = {IX, 53 S. 20 Abb.}, year = {2017}, language = {de} } @inproceedings{PfaffShahidiEnning2017, author = {Pfaff, Raphael and Shahidi, Parham and Enning, Manfred}, title = {Connected freight rail rolling stock: a modular approach integrating sensors, actors and cyber physical systems for operational advantages and condition based maintenance}, series = {Asia-Pacific Conference of the Prognostics and Health Management Society}, booktitle = {Asia-Pacific Conference of the Prognostics and Health Management Society}, pages = {1 -- 7}, year = {2017}, language = {en} } @inproceedings{PfaffSchmidtEnning2017, author = {Pfaff, Raphael and Schmidt, B. D. and Enning, Manfred}, title = {Towards inclusion of the freight rail system in the industrial internet of things - Wagon 4.0}, series = {Stephenson Conference, London, March 2017}, booktitle = {Stephenson Conference, London, March 2017}, pages = {1 -- 10}, year = {2017}, language = {en} } @inproceedings{PfaffMoshiriReichetal.2017, author = {Pfaff, Raphael and Moshiri, Amir and Reich, Alexander and G{\"a}bel, Markus}, title = {Modelling of the effect of sanding on the wheel-rail adhesion area}, series = {First International Conference on Rail Transportation}, booktitle = {First International Conference on Rail Transportation}, pages = {1 -- 7}, year = {2017}, language = {en} } @article{PfaffEnning2017, author = {Pfaff, Raphael and Enning, Manfred}, title = {G{\"u}terwagen 4.0 - Der G{\"u}terwagen f{\"u}r das Internet der Dinge. Teil 2: Ausgew{\"a}hlte technische Aspekte und Prozesse}, series = {ETR - Eisenbahntechnische Rundschau}, volume = {66}, journal = {ETR - Eisenbahntechnische Rundschau}, number = {5}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {74 -- 77}, year = {2017}, language = {de} }