@article{NdoumbeMbonjoMbonjoStreckertBitzetal.2004, author = {Ndoumb{\`e} Mbonjo Mbonjo, H. and Streckert, J. and Bitz, Andreas and Hansen, V. and Glasmachers, A. and Gencol, S. and Rozic, D.}, title = {Generic UMTS test signal for RF bioelectromagnetic studies}, series = {Bioelectromagnetics}, volume = {25}, journal = {Bioelectromagnetics}, number = {6}, issn = {1521-186X}, doi = {10.1002/bem.20007}, pages = {415 -- 425}, year = {2004}, language = {en} } @article{KoenigWolf2018, author = {K{\"o}nig, Johannes Alexander and Wolf, Martin}, title = {GHOST: An Evaluated Competence Developing Game for Cybersecurity Awareness Training}, series = {International Journal on Advances in Security}, volume = {11}, journal = {International Journal on Advances in Security}, number = {3 \& 4}, publisher = {IARIA Journals}, issn = {1942-2636}, pages = {274 -- 287}, year = {2018}, abstract = {To train end users how to interact with digital systems is indispensable to ensure a strong computer security. 'Competence Developing Game'-based approaches are particularly suitable for this purpose because of their motivation-and simulation-aspects. In this paper the Competence Developing Game 'GHOST' for cybersecurity awareness trainings and its underlying patterns are described. Accordingly, requirements for an 'Competence Developing Game' based training are discussed. Based on these requirements it is shown how a game can fulfill these requirements. A supplementary game interaction design and a corresponding evaluation study is shown. The combination of training requirements and interaction design is used to create a 'Competence Developing Game'-based training concept. A part of these concept is implemented into a playable prototype that serves around one hour of play respectively training time. This prototype is used to perform an evaluation of the game and training aspects of the awareness training. Thereby, the quality of the game aspect and the effectiveness of the training aspect are shown.}, language = {en} } @inproceedings{MatareSchifferFerrein2019, author = {Matar{\´e}, Victor and Schiffer, Stefan and Ferrein, Alexander}, title = {golog++ : An integrative system design}, series = {CogRob 2018. Cognitive Robotics Workshop : Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018) Tempe, AZ, USA, October 27th, 2018}, booktitle = {CogRob 2018. Cognitive Robotics Workshop : Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018) Tempe, AZ, USA, October 27th, 2018}, editor = {Steinbauer, Gerald and Ferrein, Alexander}, issn = {1613-0073}, pages = {29 -- 35}, year = {2019}, language = {en} } @article{Ferrein2010, author = {Ferrein, Alexander}, title = {golog.lua: Towards a Non-Prolog Implementation of Golog for Embedded Systems}, series = {Cognitive Robotics / Lakemeyer, Gerhard (ed.)}, journal = {Cognitive Robotics / Lakemeyer, Gerhard (ed.)}, pages = {1 -- 15}, year = {2010}, language = {en} } @article{Ferrein2010, author = {Ferrein, Alexander}, title = {golog.lua: Towards a Non-Prolog Implementation of Golog for Embedded Systems}, pages = {20 -- 28}, year = {2010}, language = {en} } @inproceedings{ChajanSchulteTiggesRekeetal.2021, author = {Chajan, Eduard and Schulte-Tigges, Joschua and Reke, Michael and Ferrein, Alexander and Matheis, Dominik and Walter, Thomas}, title = {GPU based model-predictive path control for self-driving vehicles}, series = {IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-5394-0}, doi = {10.1109/IV48863.2021.9575619}, pages = {1243 -- 1248}, year = {2021}, abstract = {One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments.}, language = {en} } @article{HagemannOBryan1987, author = {Hagemann, Hans-J{\"u}rgen and O´Bryan, H. M.}, title = {Grain boundary and surface segragation of Ba-Ti-O-Phases in rutile. O´Bryan, H. M.; Hagemann, H. J.}, series = {Journal of the American Ceramic Society. 70 (1987)}, journal = {Journal of the American Ceramic Society. 70 (1987)}, isbn = {0002-7820}, pages = {274 -- 278}, year = {1987}, language = {en} } @inproceedings{LorenzAltherrPelz2019, author = {Lorenz, Imke-Sophie B. and Altherr, Lena and Pelz, Peter F.}, title = {Graph-theoretic resilience analysis of a water distribution system's topology}, series = {World Congress on Resilience, Reliability and Asset Management 2019}, booktitle = {World Congress on Resilience, Reliability and Asset Management 2019}, pages = {106 -- 109}, year = {2019}, abstract = {Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. In practice, the focus is set on the most beneficial maintenance measures and/or capacity adaptations of existing water distribution systems (WDS). Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of WDS, i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, metrics based on graph theory have been proposed. In this study, a promising approach is applied to assess the resilience of the WDS for a district in a major German City. The conducted analysis provides insight into the process of actively influencing the resilience of WDS}, language = {en} } @article{Wolf2000, author = {Wolf, Martin}, title = {Groupware related task design}, series = {ACM SIGGROUP Bulletin. 21 (2000), H. 2}, journal = {ACM SIGGROUP Bulletin. 21 (2000), H. 2}, publisher = {-}, pages = {5 -- 8}, year = {2000}, language = {en} } @article{Wolf2000, author = {Wolf, Martin}, title = {Groupware related task design}, series = {ACM SIGGROUP Bulletin}, volume = {21}, journal = {ACM SIGGROUP Bulletin}, number = {2}, issn = {2372-7403}, doi = {10.1145/605660.605662}, pages = {5 -- 8}, year = {2000}, abstract = {his report summarizes the results of a workshop on Groupware related task design which took place at the International Conference on Supporting Group Work Group'99, Arizona, from 14 th to 17 th November 1999. The workshop was addressed to people from different viewpoints, backgrounds, and domains: - Researchers dealing with questions of task analysis and task modeling for Groupware application from an academic point of view. They may contribute modelbased design approaches or theoretically oriented work - Practitioners with experience in the design and everyday use of groupware systems. They might refer to the practical side of the topic: "real" tasks, "real" problems, "real" users, etc.}, language = {en} }