@article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Lorenz, Ulf and Pelz, Peter F.}, title = {Examination and optimization of a heating circuit for energy-efficient buildings}, series = {Energy Technology}, volume = {4}, journal = {Energy Technology}, number = {1}, publisher = {WILEY-VCH Verlag}, address = {Weinheim}, isbn = {2194-4296}, doi = {10.1002/ente.201500252}, pages = {136 -- 144}, year = {2015}, abstract = {The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortstr{\"o}m reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings.}, language = {en} } @article{NoureddineBitzLaddetal.2015, author = {Noureddine, Yacine and Bitz, Andreas and Ladd, Mark E. and Th{\"u}rling, Markus and Ladd, Susanne C. and Schaefers, Gregor and Kraff, Oliver}, title = {Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {28}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-015-0499-y}, pages = {577 -- 590}, year = {2015}, language = {en} } @inproceedings{BraunHoefkenSchubaetal.2015, author = {Braun, Sebastian and H{\"o}fken, Hans-Wilhelm and Schuba, Marko and Breuer, Michael}, title = {Forensische Sicherung von DSLRoutern}, series = {Proceedings of D-A-CH Security 2015. St. Augustin 8. und 9. September 2015}, booktitle = {Proceedings of D-A-CH Security 2015. St. Augustin 8. und 9. September 2015}, pages = {11 S.}, year = {2015}, language = {de} } @article{KlingeOttoMuehl2015, author = {Klinge, Uwe and Otto, Jens and M{\"u}hl, Thomas}, title = {High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain}, series = {BioMed Research International}, volume = {2015}, journal = {BioMed Research International}, issn = {2314-6133 (Print)}, doi = {10.1155/2015/953209}, pages = {7 pages}, year = {2015}, language = {en} } @inproceedings{AlhwarinFerreinGebhardtetal.2015, author = {Alhwarin, Faraj and Ferrein, Alexander and Gebhardt, Andreas and Kallweit, Stephan and Scholl, Ingrid and Tedjasukmana, Osmond Sanjaya}, title = {Improving additive manufacturing by image processing and robotic milling}, series = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, booktitle = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, doi = {10.1109/CoASE.2015.7294217}, pages = {924 -- 929}, year = {2015}, language = {en} } @incollection{KuemmellHillgaertner2015, author = {K{\"u}mmell, Steffen and Hillg{\"a}rtner, Michael}, title = {Inductive charging comfortable and nonvisible charging stations for urbanised areas}, series = {E-Mobility in Europe : trends and good practice}, booktitle = {E-Mobility in Europe : trends and good practice}, publisher = {Springer}, address = {Cham [u.a.]}, isbn = {978-3-319-13193-1}, doi = {10.1007/978-3-319-13194-8_16}, pages = {297 -- 309}, year = {2015}, abstract = {For a wide acceptance of E-Mobility, a well-developed charging infrastructure is needed. Conductive charging stations, which are today's state of the art, are of limited suitability for urbanised areas, since they cause a significant diversification in townscape. Furthermore, they might be destroyed by vandalism. Besides for those urbanistic reasons, inductive charging stations are a much more comfortable alternative, especially in urbanised areas. The usage of conductive charging stations requires more or less bulky charging cables. The handling of those standardised charging cables, especially during poor weather conditions, might cause inconvenience, such as dirty clothing etc. Wireless charging does not require visible and vandalism vulnerable charge sticks. No wired connection between charging station and vehicle is needed, which enable the placement below the surface of parking spaces or other points of interest. Inductive charging seems to be the optimal alternative for E-Mobility, as a high power transfer can be realised with a manageable technical and financial effort. For a well-accepted and working public charging infrastructure in urbanised areas it is essential that the infrastructure fits the vehicles' needs. Hence, a well-adjusted standardisation of the charging infrastructure is essential. This is carried out by several IEC (International Electrotechnical Commission) and national standardisation committees. To ensure an optimised technical solution for future's inductive charging infrastructures, several field tests had been carried out and are planned in near future.}, language = {en} } @incollection{RahierRitzWallenborn2015, author = {Rahier, Michael and Ritz, Thomas and Wallenborn, Ramona}, title = {Information and communication technology for integrated mobility concepts such as E-carsharing}, series = {E-Mobility in Europe : trends and good practice}, booktitle = {E-Mobility in Europe : trends and good practice}, publisher = {Springer}, address = {Cham [u.a.]}, isbn = {978-3-319-13193-1}, doi = {10.1007/978-3-319-13194-8_17}, pages = {311 -- 326}, year = {2015}, abstract = {During the past decade attitude towards sharing things has changed extremely. Not just personal data is shared (e.g. in social networks) but also mobility. Together with the increased ecological awareness of the recent years, new mobility concepts have evolved. E-carsharing has become a symbol for these changes of attitude. The management of a shared car fleet, the energy management of electric mobility and the management of various carsharing users with individual likes and dislikes are just some of the major challenges of e-carsharing. Weaving it into integrated mobility concepts, this raises complexity even further. These challenges can only be overcome by an appropriate amount of well-shaped information available at the right place and time. In order to gather, process and share the required information, fleet cars have to be equipped with modern information and communication technology (ICT) and become so-called fully connected cars. Ensuring the usability of these ICT systems is another challenge that is often neglected, even though it is usability that makes carsharing comfortable, attractive and supports users' new attitudes. By means of an integrated and consistent concept for human-machine interaction (HMI), the usability of such systems can be raised tremendously.}, language = {en} } @inproceedings{KrueckelNoldenFerreinetal.2015, author = {Kr{\"u}ckel, Kai and Nolden, Florian and Ferrein, Alexander and Scholl, Ingrid}, title = {Intuitive visual teleoperation for UGVs using free-look augmented reality displays}, series = {2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA}, booktitle = {2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA}, doi = {10.1109/ICRA.2015.7139809}, pages = {4412 -- 4417}, year = {2015}, language = {en} } @article{Czarnecki2015, author = {Czarnecki, Christian}, title = {Moderne Telekommunikationsprodukte erfordern standardisierte Gesch{\"a}ftsprozesse}, series = {Wirtschaft und Wissenschaft}, journal = {Wirtschaft und Wissenschaft}, number = {2}, publisher = {Deutsche Telekom AG. Fachhochschule Leipzig}, address = {Leipzig}, pages = {7 -- 7}, year = {2015}, language = {de} } @incollection{RebelHueningScholletal.2015, author = {Rebel, S{\"o}ren and H{\"u}ning, Felix and Scholl, Ingrid and Ferrein, Alexander}, title = {MQOne: Low-cost design for a rugged-terrain robot platform}, series = {Intelligent robotics and applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II (Lecture notes in computer science : vol. 9245)}, booktitle = {Intelligent robotics and applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II (Lecture notes in computer science : vol. 9245)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-22875-4 (print) ; 978-3-319-22876-1 (E-Book)}, doi = {10.1007/978-3-319-22876-1_19}, pages = {209 -- 221}, year = {2015}, abstract = {Rugged terrain robot designs are important for field robotics missions. A number of commercial platforms are available, however, at an impressive price. In this paper, we describe the hardware and software component of a low-cost wheeled rugged-terrain robot. The robot is based on an electric children quad bike and is modified to be driven by wire. In terms of climbing properties, operation time and payload it can compete with some of the commercially available platforms, but at a far lower price.}, language = {en} }