@incollection{DuffnerUibelPetersonetal.2023, author = {Duffner, Markus and Uibel, Thomas and Peterson, Leif Arne and Moorkamp, Wilfried}, title = {Cross Layers Light - Ein ressourceneffizientes und recyclebares Holz-Wandsystem}, series = {Bauphysik Kalender 2023: Nachhaltigkeit}, booktitle = {Bauphysik Kalender 2023: Nachhaltigkeit}, editor = {Fouad, Nabil A.}, publisher = {Ernst \& Sohn}, address = {Berlin}, isbn = {9783433033890 (Print)}, doi = {10.1002/9783433611289.ch13}, pages = {483 -- 501}, year = {2023}, abstract = {Ein neues tragendes, lagenweise aufgebautes Holzbau-Wandsystem und seine {\"o}konomische und statische Entwicklung werden vorgestellt. Randbedingungen wie Nachhaltigkeit, Ressourceneffizienz und eine beanspruchungsadaptive Konstruktionsweise sind f{\"u}r diese innovative Bauteilentwicklung von zentraler Bedeutung. Eine wesentliche Herausforderung ist die Herstellung der Verbindung der Lagen untereinander zu einem bauphysikalisch und statisch leistungsf{\"a}higen Wandsystem. Die Tragf{\"a}higkeit und Steifigkeit verschiedener Verbindungsvarianten wurden ebenso wie die Eigenschaften der Wandelemente analytisch, numerisch und experimentell untersucht.}, language = {de} } @incollection{MoorkampPetersonUibel2023, author = {Moorkamp, Wilfried and Peterson, Leif Arne and Uibel, Thomas}, title = {Standardholzbr{\"u}cken f{\"u}r kommunale Geh- und Radwege}, series = {Strukturen, Formen und Prinzipien : Festschrift zum 60. Geburtstag von Univ.-Prof. Dr.-Ing. Martin Trautz}, booktitle = {Strukturen, Formen und Prinzipien : Festschrift zum 60. Geburtstag von Univ.-Prof. Dr.-Ing. Martin Trautz}, editor = {Wehren, Cedric}, publisher = {RWTH Aachen}, address = {Aachen}, isbn = {978-3-95886-500-6}, pages = {140 -- 165}, year = {2023}, language = {de} } @book{UibelPeterson2023, author = {Uibel, Thomas and Peterson, Leif Arne}, title = {Tagungsband Aachener Holzbautagung 2023}, editor = {Uibel, Thomas and Peterson, Leif Arne}, publisher = {FH Aachen}, address = {Aachen}, issn = {2197-4489}, year = {2023}, language = {de} } @book{JanserHavermannHoeveleretal.2023, author = {Janser, Frank and Havermann, Marc and Hoeveler, Bastian and Hertz, Cyril and Bergmann, Ole}, title = {Str{\"o}mungslehre und Aerodynamik : inkompressible Profile und Tragfl{\"u}gelaerodynamik, Band 2}, edition = {4. Auflage}, publisher = {Mainz}, address = {Aachen}, isbn = {978-3-8107-0261-6}, pages = {XIII, 211 Seiten}, year = {2023}, abstract = {Das vorliegende Buch dient als Grundlage f{\"u}r die Bachelor- und Master-Ausbildung von Studierenden im Fachgebiet Str{\"o}mungslehre und Aerodynamik. Im hier behandelten Teilbereich der inkompressiblen Profile und Tragfl{\"u}gelaerodynamik werden schwerpunktm{\"a}ßig die folgenden Themen besprochen: - Profilaerodynamik - Tragfl{\"u}gelaerodynamik - Flugzeugpolare - Methoden zur Flugbereichserweiterung - Schwebeschub und Schwebeleistung - Propellerblattaerodynamik - Numerische Methoden zur Tragfl{\"u}gelberechnung}, language = {de} } @inproceedings{MoehrenBergmannJanseretal.2023, author = {M{\"o}hren, Felix and Bergmann, Ole and Janser, Frank and Braun, Carsten}, title = {On the determination of harmonic propeller loads}, series = {AIAA SCITECH 2023 Forum}, booktitle = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, doi = {10.2514/6.2023-2404}, pages = {12 Seiten}, year = {2023}, abstract = {Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures.}, language = {en} } @article{BergmannMoehrenBraunetal.2023, author = {Bergmann, Ole and M{\"o}hren, Felix and Braun, Carsten and Janser, Frank}, title = {On the influence of elasticity on swept propeller noise}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-0210}, year = {2023}, abstract = {High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation.}, language = {en} } @article{RhodenBallGrajewskietal.2023, author = {Rhoden, Imke and Ball, Christopher Stephen and Grajewski, Matthias and Kuckshinrich, Wilhelm}, title = {Reverse engineering of stakeholder preferences - A multi-criteria assessment of the German passenger car sector}, series = {Renewable and Sustainable Energy Reviews}, volume = {181}, journal = {Renewable and Sustainable Energy Reviews}, number = {July 2023}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1364-0321}, doi = {10.1016/j.rser.2023.113352}, pages = {Article number: 113352}, year = {2023}, abstract = {Germany is a frontrunner in setting frameworks for the transition to a low-carbon system. The mobility sector plays a significant role in this shift, affecting different people and groups on multiple levels. Without acceptance from these stakeholders, emission targets are out of reach. This research analyzes how the heterogeneous preferences of various stakeholders align with the transformation of the mobility sector, looking at the extent to which the German transformation paths are supported and where stakeholders are located. Under the research objective of comparing stakeholders' preferences to identify which car segments require additional support for a successful climate transition, a status quo of stakeholders and car performance criteria is the foundation for the analysis. Stakeholders' hidden preferences hinder the derivation of criteria weightings from stakeholders; therefore, a ranking from observed preferences is used. This study's inverse multi-criteria decision analysis means that weightings can be predicted and used together with a recalibrated performance matrix to explore future preferences toward car segments. Results show that stakeholders prefer medium-sized cars, with the trend pointing towards the increased potential for alternative propulsion technologies and electrified vehicles. These insights can guide the improved targeting of policy supporting the energy and mobility transformation. Additionally, the method proposed in this work can fully handle subjective approaches while incorporating a priori information. A software implementation of the proposed method completes this work and is made publicly available.}, language = {en} } @article{VoegeleJosyabhatlaBalletal.2023, author = {V{\"o}gele, Stefan and Josyabhatla, Vishnu Teja and Ball, Christopher Stephen and Rhoden, Imke and Grajewski, Matthias and R{\"u}bbelke, Dirk and Kuckshinrichs, Wilhelm}, title = {Robust assessment of energy scenarios from stakeholders' perspectives}, series = {Energy}, journal = {Energy}, number = {In Press, Article 128326}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6785 (Online)}, doi = {10.1016/j.energy.2023.128326}, year = {2023}, abstract = {Using scenarios is vital in identifying and specifying measures for successfully transforming the energy system. Such transformations can be particularly challenging and require the support of a broader set of stakeholders. Otherwise, there will be opposition in the form of reluctance to adopt the necessary technologies. Usually, processes for considering stakeholders' perspectives are very time-consuming and costly. In particular, there are uncertainties about how to deal with modifications in the scenarios. In principle, new consulting processes will be required. In our study, we show how multi-criteria decision analysis can be used to analyze stakeholders' attitudes toward transition paths. Since stakeholders differ regarding their preferences and time horizons, we employ a multi-criteria decision analysis approach to identify which stakeholders will support or oppose a transition path. We provide a flexible template for analyzing stakeholder preferences toward transition paths. This flexibility comes from the fact that our multi-criteria decision aid-based approach does not involve intensive empirical work with stakeholders. Instead, it involves subjecting assumptions to robustness analysis, which can help identify options to influence stakeholders' attitudes toward transitions.}, language = {en} } @article{EmontsBuyel2023, author = {Emonts, Jessica and Buyel, Johannes Felix}, title = {An overview of descriptors to capture protein properties - Tools and perspectives in the context of QSAR modeling}, series = {Computational and Structural Biotechnology Journal}, journal = {Computational and Structural Biotechnology Journal}, number = {21}, publisher = {Research Network of Computational and Structural Biotechnology}, address = {Gotenburg}, issn = {2001-0370 (online-ressource)}, doi = {10.1016/j.csbj.2023.05.022}, pages = {3234 -- 3247}, year = {2023}, abstract = {Proteins are important ingredients in food and feed, they are the active components of many pharmaceutical products, and they are necessary, in the form of enzymes, for the success of many technical processes. However, production can be challenging, especially when using heterologous host cells such as bacteria to express and assemble recombinant mammalian proteins. The manufacturability of proteins can be hindered by low solubility, a tendency to aggregate, or inefficient purification. Tools such as in silico protein engineering and models that predict separation criteria can overcome these issues but usually require the complex shape and surface properties of proteins to be represented by a small number of quantitative numeric values known as descriptors, as similarly used to capture the features of small molecules. Here, we review the current status of protein descriptors, especially for application in quantitative structure activity relationship (QSAR) models. First, we describe the complexity of proteins and the properties that descriptors must accommodate. Then we introduce descriptors of shape and surface properties that quantify the global and local features of proteins. Finally, we highlight the current limitations of protein descriptors and propose strategies for the derivation of novel protein descriptors that are more informative.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} }