@article{FiedlerLaddClemensetal.2020, author = {Fiedler, Thomas M. and Ladd, Mark E. and Clemens, Markus and Bitz, Andreas}, title = {Safety of subjects during radiofrequency exposure in ultra-high-field magnetic resonance imaging}, series = {IEEE Letters on Electromagnetic Compatibility Practice and Applications}, volume = {2}, journal = {IEEE Letters on Electromagnetic Compatibility Practice and Applications}, number = {3}, publisher = {IEEE}, address = {New York, NY}, isbn = {2637-6423}, doi = {10.1109/LEMCPA.2020.3029747}, pages = {1 -- 8}, year = {2020}, abstract = {Magnetic resonance imaging (MRI) is one of the most important medical imaging techniques. Since the introduction of MRI in the mid-1980s, there has been a continuous trend toward higher static magnetic fields to obtain i.a. a higher signal-to-noise ratio. The step toward ultra-high-field (UHF) MRI at 7 Tesla and higher, however, creates several challenges regarding the homogeneity of the spin excitation RF transmit field and the RF exposure of the subject. In UHF MRI systems, the wavelength of the RF field is in the range of the diameter of the human body, which can result in inhomogeneous spin excitation and local SAR hotspots. To optimize the homogeneity in a region of interest, UHF MRI systems use parallel transmit systems with multiple transmit antennas and time-dependent modulation of the RF signal in the individual transmit channels. Furthermore, SAR increases with increasing field strength, while the SAR limits remain unchanged. Two different approaches to generate the RF transmit field in UHF systems using antenna arrays close and remote to the body are investigated in this letter. Achievable imaging performance is evaluated compared to typical clinical RF transmit systems at lower field strength. The evaluation has been performed under consideration of RF exposure based on local SAR and tissue temperature. Furthermore, results for thermal dose as an alternative RF exposure metric are presented.}, language = {en} } @book{Scholl1996, author = {Scholl, Ingrid}, title = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen ; proceedings des Aachener Workshops am 8. und 9. November 1996 / Institut f{\"u}r Medizinische Informatik und Biometrie der RWTH Aachen. Hrsg. von Thomas Lehmann ; Ingrid Scholl ; Klaus Spitzer}, editor = {Lehmann, Thomas Martin and Spitzer, Klaus}, publisher = {Verlag der Augustinus-Buchhandlung}, address = {Aachen}, isbn = {3-86073-519-5}, pages = {XIII, 427 S. : Ill., graph. Darst.}, year = {1996}, language = {de} } @inproceedings{SchollBartellaMoluluoetal.2019, author = {Scholl, Ingrid and Bartella, Alexander K. and Moluluo, Cem and Ertural, Berat and Laing, Frederic and Suder, Sebastian}, title = {MedicVR : Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality}, series = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-25326-4}, doi = {10.1007/978-3-658-25326-4_32}, pages = {152 -- 157}, year = {2019}, language = {en} } @article{SchlamannYoonMaderwaldetal.2009, author = {Schlamann, M. and Yoon, M.-S. and Maderwald, S. and Pietrzyk, Thomas and Bitz, Andreas and Gerwig, M. and Forsting, M. and Ladd, S. C. and Ladd, M. E. and Kastrup, O.}, title = {Auswirkungen der Magnetresonanztomografie auf die Elektrophysiologie des motorischen Kortex: eine Studie mit transkranieller Magnetstimulation}, series = {R{\"o}Fo - Fortschritte auf dem Giebiet der R{\"o}ntgenstrahlen und der bildgebenden Verfahren}, volume = {181}, journal = {R{\"o}Fo - Fortschritte auf dem Giebiet der R{\"o}ntgenstrahlen und der bildgebenden Verfahren}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {1438-9029}, doi = {10.1055/s-0028-1109038}, pages = {215 -- 219}, year = {2009}, language = {de} } @article{SchmidtForkmannSchultzetal.2019, author = {Schmidt, Katharina and Forkmann, Katarina and Schultz, Heidrun and Gratz, Marcel and Bitz, Andreas and Wiech, Katja and Bingel, Ulrike}, title = {Enhanced Neural Reinstatement for Evoked Facial Pain Compared With Evoked Hand Pain}, series = {The Journal of Pain}, journal = {The Journal of Pain}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1526-5900}, doi = {10.1016/j.jpain.2019.03.003}, year = {2019}, language = {en} } @article{SchmidtForkmannSinkeetal.2016, author = {Schmidt, Katharina and Forkmann, Katarina and Sinke, C. and Gratz, Marcel and Bitz, Andreas and Bingel, Ulrike}, title = {The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear}, series = {NeuroImage}, volume = {134}, journal = {NeuroImage}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2016.03.026}, pages = {386 -- 395}, year = {2016}, abstract = {Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance.}, language = {en} } @article{OrzadaSolbachGratzetal.2019, author = {Orzada, Stephan and Solbach, Klaus and Gratz, Marcel and Brunheim, Sascha and Fiedler, Thomas M. and Johst, S{\"o}ren and Bitz, Andreas and Shooshtary, Samaneh and Abuelhaija, Ashraf and Voelker, Maximilian N. and Rietsch, Stefan H. G. and Kraff, Oliver and Maderwald, Stefan and Fl{\"o}ser, Martina and Oehmingen, Mark and Quick, Harald H. and Ladd, Mark E.}, title = {A 32-channel parallel transmit system add-on for 7T MRI}, series = {Plos one}, journal = {Plos one}, doi = {10.1371/journal.pone.0222452}, year = {2019}, language = {en} } @article{RietschBrunheimOrzadaetal.2019, author = {Rietsch, Stefan H. G. and Brunheim, Sascha and Orzada, Stephan and Voelker, Maximilian N. and Maderwald, Stefan and Bitz, Andreas and Gratz, Marcel and Ladd, Mark E. and Quick, Harald H.}, title = {Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.27731}, year = {2019}, language = {en} } @article{OrzadaBitzJohstetal.2017, author = {Orzada, Stephan and Bitz, Andreas and Johst, S{\"o}ren and Gratz, Marcel and V{\"o}lker, Maximilian N. and Kraff, Oliver and Abuelhaija, Ashraf and Fiedler, Thomas M. and Solbach, Klaus and Quick, Harald H. and Ladd, Mark E.}, title = {Analysis of an integrated 8-Channel Tx/Rx body array for use as a body coil in 7-Tesla MRI}, series = {Frontiers in Physics}, volume = {5}, journal = {Frontiers in Physics}, number = {Jun}, issn = {2296-424X}, doi = {10.3389/fphy.2017.00017}, year = {2017}, language = {en} } @incollection{FerreinNikolovskiLimpertetal.2023, author = {Ferrein, Alexander and Nikolovski, Gjorgji and Limpert, Nicolas and Reke, Michael and Schiffer, Stefan and Scholl, Ingrid}, title = {Controlling a Fleet of Autonomous LHD Vehicles in Mining Operation}, series = {Multi-Robot Systems - New Advances}, booktitle = {Multi-Robot Systems - New Advances}, editor = {K{\"u}{\c{c}}{\"u}k, Serdar}, publisher = {Intech Open}, address = {London}, isbn = {978-1-83768-290-4}, doi = {10.5772/intechopen.113044}, pages = {21 Seiten}, year = {2023}, abstract = {In this chapter, we report on our activities to create and maintain a fleet of autonomous load haul dump (LHD) vehicles for mining operations. The ever increasing demand for sustainable solutions and economic pressure causes innovation in the mining industry just like in any other branch. In this chapter, we present our approach to create a fleet of autonomous special purpose vehicles and to control these vehicles in mining operations. After an initial exploration of the site we deploy the fleet. Every vehicle is running an instance of our ROS 2-based architecture. The fleet is then controlled with a dedicated planning module. We also use continuous environment monitoring to implement a life-long mapping approach. In our experiments, we show that a combination of synthetic, augmented and real training data improves our classifier based on the deep learning network Yolo v5 to detect our vehicles, persons and navigation beacons. The classifier was successfully installed on the NVidia AGX-Drive platform, so that the abovementioned objects can be recognised during the dumper drive. The 3D poses of the detected beacons are assigned to lanelets and transferred to an existing map.}, language = {de} }