@incollection{AlhwarinFerreinScholl2014, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {IR stereo kinect: improving depth images by combining structured light with IR stereo}, series = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, booktitle = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, publisher = {Springer}, address = {M{\"u}nchen}, isbn = {978-3-319-13559-5 (Print) ; 978-3-319-13560-1 (E-Book)}, doi = {10.1007/978-3-319-13560-1_33}, pages = {409 -- 421}, year = {2014}, abstract = {RGB-D sensors such as the Microsoft Kinect or the Asus Xtion are inexpensive 3D sensors. A depth image is computed by calculating the distortion of a known infrared light (IR) pattern which is projected into the scene. While these sensors are great devices they have some limitations. The distance they can measure is limited and they suffer from reflection problems on transparent, shiny, or very matte and absorbing objects. If more than one RGB-D camera is used the IR patterns interfere with each other. This results in a massive loss of depth information. In this paper, we present a simple and powerful method to overcome these problems. We propose a stereo RGB-D camera system which uses the pros of RGB-D cameras and combine them with the pros of stereo camera systems. The idea is to utilize the IR images of each two sensors as a stereo pair to generate a depth map. The IR patterns emitted by IR projectors are exploited here to enhance the dense stereo matching even if the observed objects or surfaces are texture-less or transparent. The resulting disparity map is then fused with the depth map offered by the RGB-D sensor to fill the regions and the holes that appear because of interference, or due to transparent or reflective objects. Our results show that the density of depth information is increased especially for transparent, shiny or matte objects.}, language = {en} } @inproceedings{HeuermannFinger2014, author = {Heuermann, Holger and Finger, Torsten}, title = {2.45 GHz Plasma Powered Spark Plug by Thermal and EM-Optimization}, pages = {30 Folien}, year = {2014}, language = {en} } @article{HeuermannEmmrichBongartz2022, author = {Heuermann, Holger and Emmrich, Thomas and Bongartz, Simon}, title = {Microwave spark plug to support ignitions with high compression ratios}, series = {IEEE Transactions on Plasma Science}, journal = {IEEE Transactions on Plasma Science}, number = {Early Access}, publisher = {IEEE}, issn = {1939-9375}, doi = {10.1109/TPS.2022.3183690}, pages = {1 -- 6}, year = {2022}, abstract = {Upcoming gasoline engines should run with a larger number of fuels beginning from petrol over methanol up to gas by a wide range of compression ratios and a homogeneous charge. In this article, the microwave (MW) spark plug, based on a high-speed frequency hopping system, is introduced as a solution, which can support a nitrogen compression ratio up to 1:39 in a chamber and more. First, an overview of the high-speed frequency hopping MW ignition and operation system as well as the large number of applications are presented. Both gives an understanding of this new base technology for MW plasma generation. Focus of the theoretical part is the explanation of the internal construction of the spark plug, on the achievable of the high voltage generation as well as the high efficiency to hold the plasma. In detail, the development process starting with circuit simulations and ending with the numerical multiphysics field simulations is described. The concept is evaluated with a reference prototype covering the frequency range between 2.40 and 2.48 GHz and working over a large power range from 20 to 200 W. A larger number of different measurements starting by vector hot-S11 measurements and ending by combined working scenarios out of hot temperature, high pressure and charge motion are winding up the article. The limits for the successful pressure tests were given by the pressure chamber. Pressures ranged from 1 to 39 bar and charge motion up to 25 m/s as well as temperatures from 30◦ to 125◦.}, language = {en} } @article{WolfArmbrusterSchlicketal.1997, author = {Wolf, Martin R. and Armbruster, S. and Schlick, Christopher and Simon, S.}, title = {Markt{\"u}bersicht Telekooperationssysteme - Das IAW stellt im Internet umfangreiche Informationen {\"u}ber Telekooperationssysteme zur Verf{\"u}gung / Wolf, M. ; Armbruster, S. ; Schlick, C. ; Simon, S.}, series = {FIR + IAW Mitteilungen. 29 (1997), H. 1}, journal = {FIR + IAW Mitteilungen. 29 (1997), H. 1}, publisher = {-}, pages = {11 -- 12}, year = {1997}, language = {de} } @article{Ritz2000, author = {Ritz, Thomas}, title = {Personalized information services : an electronic information commodity and its production}, series = {International Journal of E-Business Strategy Management}, volume = {2}, journal = {International Journal of E-Business Strategy Management}, number = {2}, issn = {1467-0305}, year = {2000}, language = {en} } @inproceedings{SchoppHeuermannHoltrup2014, author = {Schopp, Christoph and Heuermann, Holger and Holtrup, S.}, title = {Investigation on efficacy optimization of RF-driven automotive D-lamps}, series = {44th European Microwave Conference (EuMC),2014, Rome}, booktitle = {44th European Microwave Conference (EuMC),2014, Rome}, doi = {10.1109/EuMC.2014.6986645}, pages = {1154 -- 1157}, year = {2014}, language = {en} } @article{FerreinJacobsLakemeyer2005, author = {Ferrein, Alexander and Jacobs, Stefan and Lakemeyer, Gerhard}, title = {Unreal Golog Bots / Jacobs, Stefan ; Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {IJCAI-05 Workshop on Reasoning, Representation, and Learning in Computer Games}, journal = {IJCAI-05 Workshop on Reasoning, Representation, and Learning in Computer Games}, pages = {31 -- 36}, year = {2005}, language = {en} } @article{HeuermannSchiek1997, author = {Heuermann, Holger and Schiek, B.}, title = {Results of network analyzer measurements with leakage errors-corrected with direct calibration techniques}, series = {IEEE transactions on instrumentation and measurement : IM / Institute of Electrical and Electronics Engineers, Instrumentation and Measurement Group. 46 (1997), H. 5}, journal = {IEEE transactions on instrumentation and measurement : IM / Institute of Electrical and Electronics Engineers, Instrumentation and Measurement Group. 46 (1997), H. 5}, isbn = {0018-9456}, pages = {1120 -- 1127}, year = {1997}, language = {en} } @article{FerreinBoehnstedtLakemeyer2007, author = {Ferrein, Alexander and B{\"o}hnstedt, Lutz and Lakemeyer, Gerhard}, title = {Options in readylog reloaded -- generating decision-theoretic plan libraries in golog / B{\"o}hnstedt, Lutz ; Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {KI 2007: advances in artificial intelligence : 30th Annual German Conference on AI, KI 2007, Osnabr{\"u}ck, Germany, September 10 - 13, 2007 ; proceedings}, journal = {KI 2007: advances in artificial intelligence : 30th Annual German Conference on AI, KI 2007, Osnabr{\"u}ck, Germany, September 10 - 13, 2007 ; proceedings}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-74564-8}, pages = {352 -- 366}, year = {2007}, language = {en} } @inproceedings{NeumannFerreinKallweitetal.2014, author = {Neumann, Tobias and Ferrein, Alexander and Kallweit, Stephan and Scholl, Ingrid}, title = {Towards a mobile mapping robot for underground mines}, series = {7th Conference of Robotics and Mechatronics : RobMech 2014 : 27th and 28th Nov. 2014, Cape Town}, booktitle = {7th Conference of Robotics and Mechatronics : RobMech 2014 : 27th and 28th Nov. 2014, Cape Town}, organization = {Conference of Robotics and Mechatronics <7, 2014, Cape Town, South Africa>}, pages = {1 -- 6}, year = {2014}, language = {en} }