@article{WarmerWagnerSchoeningetal.2015, author = {Warmer, Johannes and Wagner, Patrick and Sch{\"o}ning, Michael Josef and Kaul, Peter}, title = {Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431882}, pages = {1289 -- 1298}, year = {2015}, language = {en} } @article{DelleHuckBaeckeretal.2015, author = {Delle, Lotta E. and Huck, Christina and B{\"a}cker, Matthias and M{\"u}ller, Frank and Grandthyll, Samuel and Jacobs, Karin and Lilischkis, Rainer and Vu, Xuan T. and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Thoelen, Roland and Weil, Maryam and Ingebrandt, Sven}, title = {Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431863}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @article{SeiblerKleinriddersKueterLuksetal.2007, author = {Seibler, Jost and Kleinridders, Andre and K{\"u}ter-Luks, Birgit and Niehaves, Sandra and Br{\"u}ning, Jens C. and Schwenk, Frieder}, title = {Reversible gene knockdown in mice using a tight, inducible shRNA expression system}, series = {Nucleic Acids Research}, volume = {35}, journal = {Nucleic Acids Research}, number = {7}, issn = {1362-4962}, doi = {10.1093/nar/gkm122}, pages = {e54}, year = {2007}, language = {en} } @article{PlumMaHampeletal.2006, author = {Plum, Leona and Ma, Xiaosong and Hampel, Brigitte and Balthasar, Nina and Coppari, Roberto and M{\"u}nzberg, Heike and Shanabrough, Marya and Burdakov, Denis and Rother, Eva and Janoschek, Ruth and Alber, Jens and Belgardt, Bengt F. and Koch, Linda and Seibler, Jost and Schenk, Frieder and Fekete, Csaba and Suzuki, Akira and Mak, Tak W. and Krone, Wilhelm and Horvath, Tamas L. and Ashcroft, Frances M. and Br{\"u}ning, Jens C.}, title = {Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity}, series = {The Journal of Clinical Investigation (JCI)}, volume = {116}, journal = {The Journal of Clinical Investigation (JCI)}, number = {7}, issn = {1558-8238}, doi = {10.1172/JCI27123}, pages = {1886 -- 1901}, year = {2006}, language = {en} } @article{SeiblerKueterLuksKernetal.2005, author = {Seibler, Jost and K{\"u}ter-Luks, Birgit and Kern, Heidrun and Streu, Sandra and Plum, Leona and Maurer, Jan and K{\"u}hn, Ralf and Br{\"u}ning, Jens C. and Schwenk, Frieder}, title = {Single copy shRNA configuration for ubiquitous gene knockdown in mice}, series = {Nucleic Acids Research}, volume = {33}, journal = {Nucleic Acids Research}, number = {7}, issn = {1362-4962}, doi = {10.1093/nar/gni065}, pages = {e67}, year = {2005}, language = {en} } @article{SeiblerZevnikKueterLuksetal.2003, author = {Seibler, Jost and Zevnik, Branko and K{\"u}ter-Luks, Birgit and Andreas, Susanne and Kern, Heidrun and Hennek, Thomas and Rode, Anja and Heimann, Cornelia and Faust, Nicole and Kauselmann, Gunther and Schoor, Michael and Jaenisch, Rudolf and Rajewsky, Klaus and K{\"u}hn, Ralf and Schwenk, Frieder}, title = {Rapid generation of inducible mouse mutants}, series = {Nucleic Acids Research}, volume = {33}, journal = {Nucleic Acids Research}, number = {4}, issn = {1362-4962}, doi = {10.1093/nar/gng012}, pages = {e12}, year = {2003}, language = {en} } @article{GoetzeBaerWinkelmannetal.2005, author = {Goetze, Sandra and Baer, Alexandra and Winkelmann, Silke and Nehlsen, Kristina and Seibler, Jost and Maass, Karin and Bode, J{\"u}rgen}, title = {Performance of genomic bordering elements at predefined genomic loci}, series = {Molecular and Cellular Biology}, volume = {25}, journal = {Molecular and Cellular Biology}, number = {6}, issn = {1098-5549}, doi = {10.1128/MCB.25.6.2260-2272.2005}, pages = {2260 -- 2272}, year = {2005}, language = {en} } @incollection{KuemmellHillgaertner2015, author = {K{\"u}mmell, Steffen and Hillg{\"a}rtner, Michael}, title = {Inductive charging comfortable and nonvisible charging stations for urbanised areas}, series = {E-Mobility in Europe : trends and good practice}, booktitle = {E-Mobility in Europe : trends and good practice}, publisher = {Springer}, address = {Cham [u.a.]}, isbn = {978-3-319-13193-1}, doi = {10.1007/978-3-319-13194-8_16}, pages = {297 -- 309}, year = {2015}, abstract = {For a wide acceptance of E-Mobility, a well-developed charging infrastructure is needed. Conductive charging stations, which are today's state of the art, are of limited suitability for urbanised areas, since they cause a significant diversification in townscape. Furthermore, they might be destroyed by vandalism. Besides for those urbanistic reasons, inductive charging stations are a much more comfortable alternative, especially in urbanised areas. The usage of conductive charging stations requires more or less bulky charging cables. The handling of those standardised charging cables, especially during poor weather conditions, might cause inconvenience, such as dirty clothing etc. Wireless charging does not require visible and vandalism vulnerable charge sticks. No wired connection between charging station and vehicle is needed, which enable the placement below the surface of parking spaces or other points of interest. Inductive charging seems to be the optimal alternative for E-Mobility, as a high power transfer can be realised with a manageable technical and financial effort. For a well-accepted and working public charging infrastructure in urbanised areas it is essential that the infrastructure fits the vehicles' needs. Hence, a well-adjusted standardisation of the charging infrastructure is essential. This is carried out by several IEC (International Electrotechnical Commission) and national standardisation committees. To ensure an optimised technical solution for future's inductive charging infrastructures, several field tests had been carried out and are planned in near future.}, language = {en} } @article{YoshinobuMoritzFingeretal.2006, author = {Yoshinobu, Tatsuo and Moritz, Werner and Finger, Friedhelm and Sch{\"o}ning, Michael Josef}, title = {Application of thin-film amorphous silicon to chemical imaging}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {Paper 0910-A-20-01}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {1 -- 10}, year = {2006}, language = {en} } @article{TakenagaSchneiderErbayetal.2015, author = {Takenaga, Shoko and Schneider, Benno and Erbay, E. and Biselli, Manfred and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201532053}, pages = {1347 -- 1352}, year = {2015}, abstract = {A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation.}, language = {en} }