@article{BhattaraiStaat2019, author = {Bhattarai, Aroj and Staat, Manfred}, title = {A computational study of organ relocation after laparoscopic pectopexy to repair posthysterectomy vaginal vault prolapse}, series = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, publisher = {Taylor \& Francis}, address = {London}, issn = {2168-1171}, doi = {10.1080/21681163.2019.1670095}, year = {2019}, language = {en} } @article{CapitainRossJonesMoehringetal.2020, author = {Capitain, Charlotte and Ross-Jones, Jesse and M{\"o}hring, Sophie and Tippk{\"o}tter, Nils}, title = {Differential scanning calorimetry for quantification of polymer biodegradability in compost}, series = {International Biodeterioration \& Biodegradation}, volume = {149}, journal = {International Biodeterioration \& Biodegradation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0964-8305}, doi = {10.1016/j.ibiod.2020.104914}, pages = {In Press, Article number 104914}, year = {2020}, abstract = {The objective of this study is the establishment of a differential scanning calorimetry (DSC) based method for online analysis of the biodegradation of polymers in complex environments. Structural changes during biodegradation, such as an increase in brittleness or crystallinity, can be detected by carefully observing characteristic changes in DSC profiles. Until now, DSC profiles have not been used to draw quantitative conclusions about biodegradation. A new method is presented for quantifying the biodegradation using DSC data, whereby the results were validated using two reference methods. The proposed method is applied to evaluate the biodegradation of three polymeric biomaterials: polyhydroxybutyrate (PHB), cellulose acetate (CA) and Organosolv lignin. The method is suitable for the precise quantification of the biodegradability of PHB. For CA and lignin, conclusions regarding their biodegradation can be drawn with lower resolutions. The proposed method is also able to quantify the biodegradation of blends or composite materials, which differentiates it from commonly used degradation detection methods.}, language = {en} } @article{FrotscherStaat2014, author = {Frotscher, Ralf and Staat, Manfred}, title = {Stresses produced by different textile mesh implants in a tissue equivalent}, series = {BioNanoMaterials}, volume = {15}, journal = {BioNanoMaterials}, number = {1-2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2191-4672 (E-Journal); 2193-066X (E-Journal); 0011-8656 (Print); 1616-0177 (Print); 2193-0651 (Print)}, doi = {10.1515/bnm-2014-0003}, pages = {25 -- 30}, year = {2014}, abstract = {Two single-incision mini-slings used for treating urinary incontinence in women are compared with respect to the stresses they produce in their surrounding tissue. In an earlier paper we experimentally observed that these implants produce considerably different stress distributions in a muscle tissue equivalent. Here we perform 2D finite element analyses to compare the shear stresses and normal stresses in the tissue equivalent for the two meshes and to investigate their failure behavior. The results clearly show that the Gynecare TVT fails for increasing loads in a zipper-like manner because it gradually debonds from the surrounding tissue. Contrary to that, the tissue at the ends of the DynaMesh-SIS direct may rupture but only at higher loads. The simulation results are in good agreement with the experimental observations thus the computational model helps to interpret the experimental results and provides a tool for qualitative evaluation of mesh implants.}, language = {en} } @inproceedings{KerpenBungValeroetal.2016, author = {Kerpen, Nils B. and Bung, Daniel Bernhard and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, booktitle = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, pages = {6 Seiten}, year = {2016}, language = {en} } @article{VuStaatTran2007, author = {Vu, Duc Khoi and Staat, Manfred and Tran, Ich Thinh}, title = {Analysis of pressure equipment by application of the primal-dual theory of shakedown}, series = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, journal = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, isbn = {1069-8299}, pages = {213 -- 225}, year = {2007}, language = {en} } @article{StaatVu2006, author = {Staat, Manfred and Vu, Khoi Duc}, title = {Limit loads of circumferentially flawed pipes and cylindrical vessels under internal pressure}, series = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, journal = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, isbn = {0308-0161}, pages = {188 -- 196}, year = {2006}, language = {en} } @inproceedings{BreitbachAlexopoulosHoffschmidt2007, author = {Breitbach, Gerd and Alexopoulos, Spiros and Hoffschmidt, Bernhard}, title = {Fluid flow in porous ceramic multichannel crossflower filter modules}, publisher = {COMSOL Inc.}, address = {Burlington, Mass.}, pages = {5 S.}, year = {2007}, language = {en} } @inproceedings{GoettenFingerHavermannetal.2020, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization}, series = {CEAS Aeronautical Journal}, volume = {12}, booktitle = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590}, doi = {10.1007/s13272-021-00522-w}, pages = {589 -- 603}, year = {2020}, abstract = {The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used on surveillance, reconnaissance, and search and rescue missions. The aircraft are simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV's parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft's total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft.}, language = {en} } @article{FerreinRensPoel2009, author = {Ferrein, Alexander and Rens, Gavin and Poel, Etienne van der}, title = {A BDI agent architecture for a POMDP planner / Rens, Gavin ; Ferrein, Alexander ; Poel, Etienne van der}, pages = {1 -- 6}, year = {2009}, language = {en} } @article{HeuermannSchiek1994, author = {Heuermann, Holger and Schiek, Burkhard}, title = {Calibration of network analyser measurements with leakage errors}, series = {Electronics letters. 30 (1994), H. 1}, journal = {Electronics letters. 30 (1994), H. 1}, isbn = {0013-5194}, pages = {52 -- 53}, year = {1994}, language = {en} }