@book{Lauth2023, author = {Lauth, Jakob}, title = {Physical chemistry in a nutshell: Basics for engineers and scientists}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-67636-3 (Softcover)}, doi = {10.1007/978-3-662-67637-0}, pages = {XIII, 248 Seiten}, year = {2023}, abstract = {This book is based on a multimedia course for biological and chemical engineers, which is designed to trigger students' curiosity and initiative. A solid basic knowledge of thermodynamics and kinetics is necessary for understanding many technical, chemical, and biological processes. The one-semester basic lecture course was divided into 12 workshops (chapters). Each chapter covers a practically relevant area of physical chemistry and contains the following didactic elements that make this book particularly exciting and understandable: - Links to Videos at the start of each chapter as preparation for the workshop - Key terms (in bold) for further research of your own - Comprehension questions and calculation exercises with solutions as learning checks - Key illustrations as simple, easy-to-replicate blackboard pictures Humorous cartoons for each workshop (by Faelis) additionally lighten up the text and facilitate the learning process as a mnemonic. To round out the book, the appendix includes a summary of the most popular experiments in basic physical chemistry courses, as well as suggestions for designing workshops with exhibits, experiments, and "questions of the day." Suitable for students minoring in chemistry; chemistry majors are sure to find this slimmed-down, didactically valuable book helpful as well. The book is excellent for self-study.}, language = {en} } @article{DellmannGloriusLitvinovetal.2023, author = {Dellmann, Sophia Florence and Glorius, J. and Litvinov, Yu A. and Reifarth, R. and Al-Khasawneh, Kafa and Aliotta, M. and Bott, L. and Br{\"u}ckner, Benjamin and Bruno, C. G. and Chen, Ruijiu and Davinson, T. and Dickel, T. and Dillmann, Iris and Dmytriev, D. and Erbacher, P. and Freire-Fern{\´a}ndez, D. and Forstner, Oliver and Geissel, H. and G{\"o}bel, K. and Griffin, Christopher J. and Grisenti, R. and Gumberidze, Alexandre and Haettner, Emma and Hagmann, Siegbert and Heil, M. and Heß, R. and Hillenbrand, P.-M. and Joseph, R. and Jurado, B. and Kozhuharov, Christophor and Kulikov, I. and L{\"o}her, Bastian and Langer, Christoph and Leckenby, Guy and Lederer-Woods, C. and Lestinsky, M. and Litvinov, S. A. and Lorenz, B. A. and Lorenz, E. and Marsh, J. and Menz, Esther Babette and Morgenroth, T. and Petridis, N. and Pibernat, Jerome and Popp, U. and Psaltis, Athanasios and Sanjari, Shahab and Scheidenberger, C. and Sguazzin, M. and Sidhu, Ragandeep Singh and Spillmann, Uwe and Steck, M. and St{\"o}hlker, T. and Surzhykov, A. and Swartz, J. A. and T{\"o}rnqvist, H. and Varga, L. and Vescovi, Diego and Weick, H. and Weigand, M. and Woods, P. and Xing, Y. and Yamaguchi, Taiyo}, title = {Proton capture on stored radioactive ¹¹⁸Te ions}, series = {EPJ Web of Conferences}, volume = {279}, journal = {EPJ Web of Conferences}, number = {Article Number: 11018}, publisher = {EDP Sciences}, issn = {2100-014X}, doi = {10.1051/epjconf/202327911018}, pages = {1 -- 5}, year = {2023}, abstract = {Experimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,γ) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the ¹¹⁸Te(p,γ) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped ¹¹⁸Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented.}, language = {en} } @unpublished{GreinerJerominSitholeetal.2023, author = {Greiner, Lasse and Jeromin, G{\"u}nter Erich and Sithole, Patience and Petersen, Soenke}, title = {Preprint: Studies on the enzymatic reduction of levulinic acid using Chiralidon-R and Chiralidon-S}, series = {ChemRxiv}, journal = {ChemRxiv}, doi = {10.26434/chemrxiv-2023-jlvcv}, pages = {13 Seiten}, year = {2023}, abstract = {The enzymatic reduction of levulinic acid by the chiral catalysts Chiralidon-R and Chiralidon-S which are commercially available superabsorbed alcohol dehydrogenases is described. The Chiralidon®-R/S reduces the levulinic acid to the (R,S)-4-hydroxy valeric acid and the (R)- or (S)- gamma-valerolactone.}, language = {en} } @article{DegeringEggertPulsetal.2010, author = {Degering, Christian and Eggert, Thorsten and Puls, Michael and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and Jaeger, Karl-Erich}, title = {Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and herologous signal peptides}, series = {Applied and environmental microbiology}, volume = {76}, journal = {Applied and environmental microbiology}, number = {19}, publisher = {American Society for Microbiology}, address = {Washington, DC}, issn = {1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print)}, doi = {10.1128/AEM.01146-10}, pages = {6370 -- 6378}, year = {2010}, abstract = {Bacillus subtilis and Bacillus licheniformis are widely used for the large-scale industrial production of proteins. These strains can efficiently secrete proteins into the culture medium using the general secretion (Sec) pathway. A characteristic feature of all secreted proteins is their N-terminal signal peptides, which are recognized by the secretion machinery. Here, we have studied the production of an industrially important secreted protease, namely, subtilisin BPN′ from Bacillus amyloliquefaciens. One hundred seventy-three signal peptides originating from B. subtilis and 220 signal peptides from the B. licheniformis type strain were fused to this secretion target and expressed in B. subtilis, and the resulting library was analyzed by high-throughput screening for extracellular proteolytic activity. We have identified a number of signal peptides originating from both organisms which produced significantly increased yield of the secreted protease. Interestingly, we observed that levels of extracellular protease were improved not only in B. subtilis, which was used as the screening host, but also in two different B. licheniformis strains. To date, it is impossible to predict which signal peptide will result in better secretion and thus an improved yield of a given extracellular target protein. Our data show that screening a library consisting of homologous and heterologous signal peptides fused to a target protein can identify more-effective signal peptides, resulting in improved protein export not only in the original screening host but also in different production strains.}, language = {en} } @article{DeppeBongaertsO'Connelletal.2011, author = {Deppe, Veronika Maria and Bongaerts, Johannes and O'Connell, Timothy and Maurer, Karl-Heinz and Meinhardt, Friedhelm}, title = {Enzymatic deglycation of Amadori products in bacteria}, series = {Applied microbiology and biotechnology}, volume = {Vol. 90}, journal = {Applied microbiology and biotechnology}, number = {Iss. 2}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print)}, pages = {399 -- 406}, year = {2011}, language = {en} } @article{MuschallikMolinnusBongaertsetal.2017, author = {Muschallik, Lukas and Molinnus, Denise and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Siegert, Petra and Selmer, Thorsten}, title = {(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme}, series = {Journal of Biotechnology}, volume = {258}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2017.07.020}, pages = {41 -- 50}, year = {2017}, abstract = {The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43\%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.}, language = {en} } @article{JossekBongaertsSprenger2001, author = {Jossek, Ralf and Bongaerts, Johannes and Sprenger, Georg A.}, title = {Characterization of a new feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase AroF of Escherichia coli}, series = {FEMS microbiology letters}, volume = {Vol. 202}, journal = {FEMS microbiology letters}, number = {Iss. 1}, issn = {1574-6968}, pages = {145 -- 148}, year = {2001}, language = {en} } @article{WilmingBegemannKuhneetal.2013, author = {Wilming, Anja and Begemann, Jens and Kuhne, Stefan and Regestein, Lars and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and B{\"u}chs, Jochen}, title = {Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations}, series = {Biochemical engineering journal}, volume = {Vol. 73}, journal = {Biochemical engineering journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-295X (E-Journal); 1369-703X (Print)}, pages = {29 -- 37}, year = {2013}, language = {en} } @article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} }