@article{DoerenWernicke1987, author = {D{\"o}ren, Horst-Peter and Wernicke, K.}, title = {Slijtvaste lagen door oplassen met plasmapoeder}, series = {Metaal en Kunststof: MK. Universeel weekblad voor fabriek en werkplaats. 24 (1987), Nr. 23}, journal = {Metaal en Kunststof: MK. Universeel weekblad voor fabriek en werkplaats. 24 (1987), Nr. 23}, issn = {0026-0460}, pages = {76 -- 79}, year = {1987}, language = {nl} } @article{KernBraun2013, author = {Kern, Alexander and Braun, Christian}, title = {Neuerungen bei der Blitzschutznorm. Teil 2}, series = {etz Elektrotechnik und Automation}, volume = {Bd. 134}, journal = {etz Elektrotechnik und Automation}, number = {H. 8}, publisher = {VDE-Verlag}, address = {Wuppertal}, issn = {0170-1711}, pages = {66 -- 69}, year = {2013}, language = {de} } @article{HellmannsBoehmDilger2006, author = {Hellmanns, Mark and B{\"o}hm, Stefan and Dilger, Klaus}, title = {Manual applications of adhesives}, series = {Journal of adhesion and interface}, volume = {Vol. 7}, journal = {Journal of adhesion and interface}, number = {No. 4}, pages = {24 -- 27}, year = {2006}, language = {en} } @article{BoehmHellmannsBackesetal.2006, author = {B{\"o}hm, Stefan and Hellmanns, Mark and Backes, Andreas and Dilger, Klaus}, title = {Lock-in thermography based NDT of parts for the automotive industry}, series = {Journal of adhesion and interface}, volume = {Vol. 7}, journal = {Journal of adhesion and interface}, number = {No. 4}, pages = {10 -- 12}, year = {2006}, language = {en} } @article{SabitovaEbertLenzetal.2013, author = {Sabitova, A. and Ebert, Ph. and Lenz, A. and Schaafhausen, S. and Ivanova, L. and D{\"a}hne, M. and Hoffmann, A. and Dunin-Borkowski, R. E. and F{\"o}rster, Arnold and Grandidier, B. and Eisele, H.}, title = {Intrinsic bandgap of cleaved ZnO(112¯0) surfaces}, series = {Applied physics letters}, volume = {Vol. 102}, journal = {Applied physics letters}, issn = {1077-3118 (E-Journal); 0003-6951 (Print)}, pages = {021608}, year = {2013}, language = {en} } @article{Goldbach2010, author = {Goldbach, Daniel}, title = {Fahrstabilit{\"a}tserh{\"o}hung bei Gespannen durch Querverschiebung des Anh{\"a}ngerkupplungspunktes}, series = {mechatronik mobil}, volume = {2}, journal = {mechatronik mobil}, number = {1}, publisher = {Expert Verlag}, address = {Renningen}, issn = {1867-7371}, pages = {23 -- 29}, year = {2010}, language = {de} } @article{AlebouyehSamamiPieperBreitbachetal.2014, author = {Alebouyeh Samami, Behzad and Pieper, Martin and Breitbach, Gerd and Hodapp, Josef}, title = {Heat production in the windings of the stators of electric machines under stationary condition}, series = {Heat and mass transfer}, volume = {50}, journal = {Heat and mass transfer}, publisher = {Springer}, address = {Heidelberg}, issn = {0947-7411 (Print) ; 1432-1181 (E-Journal)}, doi = {10.1007/s00231-014-1371-8}, pages = {1707 -- 1716}, year = {2014}, abstract = {In electric machines due to high currents and resistive losses (joule heating) heat is produced. To avoid damages by overheating the design of effective cooling systems is required. Therefore the knowledge of heat sources and heat transfer processes is necessary. The purpose of this paper is to illustrate a good and effective calculation method for the temperature analysis based on homogenization techniques. These methods have been applied for the stator windings in a slot of an electric machine consisting of copper wires and resin. The key quantity here is an effective thermal conductivity, which characterizes the heterogeneous wire resin-arrangement inside the stator slot. To illustrate the applicability of the method, the analysis of a simplified, homogenized model is compared with the detailed analysis of temperature behavior inside a slot of an electric machine according to the heat generation. We considered here only the stationary situation. The achieved numerical results are accurate and show that the applied homogenization technique works in practice. Finally the results of simulations for the two cases, the original model of the slot and the homogenized model chosen for the slot (unit cell), are compared to experimental results.}, language = {en} } @article{JildehWagnerSchoeningetal.2015, author = {Jildeh, Zaid B. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Pieper, Martin}, title = {Simulating the electromagnetic-thermal treatment of thin aluminium layers for adhesion improvement}, series = {Physica status solidi (a)}, volume = {Vol. 212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431893}, pages = {1234 -- 1241}, year = {2015}, abstract = {A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed.}, language = {en} } @article{MottaghyPechnigTaugsetal.2010, author = {Mottaghy, Darius and Pechnig, Renate and Taugs, Renate and Kr{\"o}ger, Jens and Thomsen, Claudia and Hesse, Fabian and Liebsch-Doerschner, Thomas}, title = {Erstellung eines geothermischen Modells f{\"u}r Teile Hamburgs und anliegende Gebiete}, series = {BBR - Fachmagazin f{\"u}r Brunnen- und Leitungsbau}, volume = {61}, journal = {BBR - Fachmagazin f{\"u}r Brunnen- und Leitungsbau}, number = {12}, publisher = {WVGW Wirtschafts- u. Verl.Ges. Gas und Wasser}, address = {Bonn}, issn = {1611-1478}, pages = {52 -- 59}, year = {2010}, language = {de} } @article{BergAngererMartinellietal.2013, author = {Berg, Milena and Angerer, Anita and Martinelli, Walter and Hammer, Stephan and Mottaghy, Darius}, title = {Erkundung des geothermischen Potenzials eines ehemaligen Untertagebergbaus}, series = {BBR - Fachmagazin f{\"u}r Brunnen- und Leitungsbau}, volume = {64}, journal = {BBR - Fachmagazin f{\"u}r Brunnen- und Leitungsbau}, number = {6}, pages = {46 -- 52}, year = {2013}, language = {de} }