@article{BialonskiAllefeldWellmeretal.2008, author = {Bialonski, Stephan and Allefeld, Carsten and Wellmer, J{\"o}rg and Elger, Christian E. and Lehnertz, Klaus}, title = {An approach to identify synchronization clusters within the epileptic network}, series = {Klinische Neurophysiologie}, volume = {39}, journal = {Klinische Neurophysiologie}, number = {1}, doi = {10.1055/s-2008-1072881}, pages = {A79}, year = {2008}, language = {en} } @inproceedings{AlKaidyUlberTippkoetter2014, author = {Al-Kaidy, Huschyar and Ulber, Roland and Tippk{\"o}tter, Nils}, title = {A platform technology for the automated reaction control in magnetizable micro-fluidic droplets}, series = {Biomaterials - made in bioreactors : book of abstracts, May 26 - 28, 2014, Radisson Blu Park Hotel and Conference Dentre, Radebeul, Germany}, booktitle = {Biomaterials - made in bioreactors : book of abstracts, May 26 - 28, 2014, Radisson Blu Park Hotel and Conference Dentre, Radebeul, Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {21 -- 22}, year = {2014}, language = {en} } @article{GrinsvenVandenBonGrietenetal.2011, author = {Grinsven, Bart van and Vanden Bon, Natalie and Grieten, Lars and Murib, Mohammed Sharif and Janssen, Stoffel Dominique and Haenen, Ken and Schneider, E. and Ingebrandt, Sven and Sch{\"o}ning, Michael Josef and Vermeeren, Veronique and Ameloot, Marcel and Michiels, Luc and Thoelen, Ronald and De Ceuninck, Ward A. and Wagner, Patrick}, title = {Rapid assessment of the stability of DNA duplexes by impedimetric real-time monitoring of chemically induced denaturation}, series = {Lab on a Chip}, volume = {11}, journal = {Lab on a Chip}, number = {9}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, isbn = {1473-0197}, pages = {1656 -- 1663}, year = {2011}, language = {en} } @article{MuribGrinsvenGrietenetal.2013, author = {Murib, M. S. and Grinsven, B. van and Grieten, L. and Janssens, S. D. and Vermeeren, V. and Eersels, K. and Broeders, J. and Ameloot, Marcel and Michiels, L. and Ceuninck, W. De and Haenen, K. and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Electronic monitoring of chemical DNA denaturation on nanocrystalline diamond electrodes with different molarities and flow rates}, series = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, journal = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {0031-8965}, pages = {911 -- 917}, year = {2013}, language = {en} } @article{MuribYeapEurlingsetal.2016, author = {Murib, M. S. and Yeap, W. S. and Eurlings, Y. and Grinsven, B. van and Boyen, H.-G. and Conings, B. and Michiels, L. and Ameloot, Marcel and Carleer, R. and Warmer, J. and Kaul, P. and Haenen, K. and Sch{\"o}ning, Michael Josef and Ceuninck, W. de and Wagner, P.}, title = {Heat-transfer based characterization of DNA on synthetic sapphire chips}, series = {Sensors and Actuators B: Chemical}, volume = {230}, journal = {Sensors and Actuators B: Chemical}, number = {230}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.02.027}, pages = {260 -- 271}, year = {2016}, abstract = {In this study, we show that synthetic sapphire (Al₂O₃), an established implant material, can also serve as a platform material for biosensors comparable to nanocrystalline diamond. Sapphire chips, beads, and powder were first modified with (3-aminopropyl) triethoxysilane (APTES), followed by succinic anhydride (SA), and finally single-stranded probe DNA was EDC coupled to the functionalized layer. The presence of the APTES-SA layer on sapphire powders was confirmed by thermogravimetric analyis and Fourier-transform infrared spectroscopy. Using planar sapphire chips as substrates and X-ray photoelectron spectroscopy (XPS) as surface-sensitive tool, the sequence of individual layers was analyzed with respect to their chemical state, enabling the quantification of areal densities of the involved molecular units. Fluorescence microscopy was used to demonstrate the hybridization of fluorescently tagged target DNA to the probe DNA, including denaturation- and re-hybridization experiments. Due to its high thermal conductivity, synthetic sapphire is especially suitable as a chip material for the heat-transfer method, which was employed to distinguish complementary- and non-complementary DNA duplexes containing single-nucleotide polymorphisms. These results indicate that it is possible to detect mutations electronically with a chemically resilient and electrically insulating chip material.}, language = {en} } @article{GrajewskiKoesterTurek2010, author = {Grajewski, Matthias and K{\"o}ster, Michael and Turek, Stefam}, title = {Numerical analysis and implementational aspects of a new multilevel grid deformation method}, series = {Applied Numerical Mathematics}, volume = {60}, journal = {Applied Numerical Mathematics}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9274}, doi = {10.1016/j.apnum.2010.03.017}, pages = {767 -- 781}, year = {2010}, abstract = {Recently, we introduced and mathematically analysed a new method for grid deformation (Grajewski et al., 2009) [15] we call basic deformation method (BDM) here. It generalises the method proposed by Liao et al. (Bochev et al., 1996; Cai et al., 2004; Liao and Anderson, 1992) [4], [6], [20]. In this article, we employ the BDM as core of a new multilevel deformation method (MDM) which leads to vast improvements regarding robustness, accuracy and speed. We achieve this by splitting up the deformation process in a sequence of easier subproblems and by exploiting grid hierarchy. Being of optimal asymptotic complexity, we experience speed-ups up to a factor of 15 in our test cases compared to the BDM. This gives our MDM the potential for tackling large grids and time-dependent problems, where possibly the grid must be dynamically deformed once per time step according to the user's needs. Moreover, we elaborate on implementational aspects, in particular efficient grid searching, which is a key ingredient of the BDM.}, language = {en} } @article{Stulpe2014, author = {Stulpe, Werner}, title = {From the attempt of certain classical reformulations of quantum mechanics to quasi-probability representations}, series = {Journal of Mathematical Physics}, volume = {55}, journal = {Journal of Mathematical Physics}, number = {1}, publisher = {AIP Publishing}, address = {College Park, Md.}, issn = {222-488}, doi = {10.1063/1.4861939}, pages = {Artikel 012109}, year = {2014}, abstract = {The concept of an injective affine embedding of the quantum states into a set of classical states, i.e., into the set of the probability measures on some measurable space, as well as its relation to statistically complete observables is revisited, and its limitation in view of a classical reformulation of the statistical scheme of quantum mechanics is discussed. In particular, on the basis of a theorem concerning a non-denseness property of a set of coexistent effects, it is shown that an injective classical embedding of the quantum states cannot be supplemented by an at least approximate classical description of the quantum mechanical effects. As an alternative approach, the concept of quasi-probability representations of quantum mechanics is considered.}, language = {en} } @article{Staat1995, author = {Staat, Manfred}, title = {Reliability of an HTR-module primary circuit pressure boundary Influences, sensitivity, and comparison with a PWR}, series = {Nuclear Engineering and Design. 158 (1995), H. 2-3}, journal = {Nuclear Engineering and Design. 158 (1995), H. 2-3}, isbn = {0029-5493}, pages = {333 -- 340}, year = {1995}, language = {en} } @article{Heuermann1999, author = {Heuermann, Holger}, title = {Calibration procedures with series impedances and unknown lines simplify on-wafer measurements}, series = {IEEE transactions on microwave theory and techniques : MTT ; a publication of the IEEE Microwave Theory and Techniques Society. 47 (1999), H. 1}, journal = {IEEE transactions on microwave theory and techniques : MTT ; a publication of the IEEE Microwave Theory and Techniques Society. 47 (1999), H. 1}, isbn = {0018-9480}, pages = {1 -- 5}, year = {1999}, language = {en} } @article{HeuermannSchiek1995, author = {Heuermann, Holger and Schiek, B.}, title = {Error corrected impedance measurements with a network analyzer}, series = {IEEE transactions on instrumentation and measurement : IM / Institute of Electrical and Electronics Engineers, Instrumentation and Measurement Group. 44 (1995), H. 2}, journal = {IEEE transactions on instrumentation and measurement : IM / Institute of Electrical and Electronics Engineers, Instrumentation and Measurement Group. 44 (1995), H. 2}, isbn = {0018-9456}, pages = {295 -- 299}, year = {1995}, language = {en} }