@article{Finger2016, author = {Finger, Felix}, title = {Senkrechtstarter: FH-Absolvent wird f{\"u}r Transportdrohne ausgezeichnet}, series = {campushunter: das etwas andere Karrieremagazin - Wintersemester 16/17}, journal = {campushunter: das etwas andere Karrieremagazin - Wintersemester 16/17}, number = {17. Regionalausgabe Aachen}, publisher = {Campushunter Media}, address = {Heidelberg}, issn = {2196-9426}, pages = {116 -- 117}, year = {2016}, language = {de} } @inproceedings{WuKemper2016, author = {Wu, Ziyi and Kemper, Hans}, title = {The optimal 48 V - battery pack for a specific load profile of a heavy duty vehicle}, series = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, booktitle = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, year = {2016}, language = {en} } @inproceedings{SchirraBauschatWatmuff2014, author = {Schirra, Julian and Bauschat, J.-Michael and Watmuff, J.H.}, title = {Accurate induced drag prediction for highly non-planar lifting systems}, series = {19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia}, booktitle = {19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia}, pages = {4 Seiten}, year = {2014}, abstract = {The impact of wake model effects is investigated for two highly non-planar lifting systems. Dependent on the geometrical arrangement of the configuration, the wake model shape is found to considerably affect the estimation. Particularly at higher angles of attack, an accurate estimation based on the common linear wake model approaches is involved.}, language = {en} } @inproceedings{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {In-flight vibration-based structural health monitoring of aircraft wings}, series = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, booktitle = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, pages = {10 Seiten}, year = {2016}, abstract = {This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes.}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2017, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications}, series = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, booktitle = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, publisher = {ASME}, address = {New York}, isbn = {978-0-7918-5085-5}, doi = {10.1115/GT2017-64795}, year = {2017}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.\%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs.}, language = {en} } @inproceedings{StrieganHajAyedFunkeetal.2017, author = {Striegan, C. and Haj Ayed, A. and Funke, Harald and Loechle, S. and Kazari, M. and Horikawa, A. and Okada, K. and Koga, K.}, title = {Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications}, series = {Proceedings of the ASME Turbo Expo}, booktitle = {Proceedings of the ASME Turbo Expo}, number = {Volume Part F130041-4B, 2017}, isbn = {978-079185085-5}, doi = {10.1115/GT2017-64719}, year = {2017}, language = {en} } @book{JanserHavermannHoeveleretal.2016, author = {Janser, Frank and Havermann, Marc and Hoeveler, Bastian and Hertz, Cyril}, title = {Inkompressible Profil- und Tragfl{\"u}gelaerodynamik}, series = {Str{\"o}mungslehre und Aerodynamik ; Band 2}, journal = {Str{\"o}mungslehre und Aerodynamik ; Band 2}, edition = {1. Auflage}, publisher = {Verlagshaus Mainz GmbH}, address = {Aachen}, isbn = {978-3-8107-0261-6}, pages = {XIII, 208 Seiten}, year = {2016}, language = {de} } @inproceedings{BarnatKnutzen2017, author = {Barnat, Miriam and Knutzen, S.}, title = {Erfolgsstrategien f{\"u}r organisationales Lernen}, series = {Hochschulwege 2015 : Wie ver{\"a}ndern Projekte die Hochschulen? ; Dokumentation der Tagung in Weimar im M{\"a}rz 2015}, booktitle = {Hochschulwege 2015 : Wie ver{\"a}ndern Projekte die Hochschulen? ; Dokumentation der Tagung in Weimar im M{\"a}rz 2015}, editor = {Mai, Andreas}, publisher = {tredition}, address = {Hamburg}, isbn = {978-3-7439-1763-7}, pages = {91 -- 108}, year = {2017}, language = {de} } @inproceedings{GrundmannMessBieleetal.2017, author = {Grundmann, Jan Thimo and Meß, Jan-Gerd and Biele, Jens and Seefeldt, Patric and Dachwald, Bernd and Spietz, Peter and Grimm, Christian D. and Spr{\"o}witz, Tom and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft in small solar system body applications}, series = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, booktitle = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, organization = {IEEE Aerospace Conference}, isbn = {978-1-5090-1613-6}, doi = {10.1109/AERO.2017.7943626}, pages = {1 -- 20}, year = {2017}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} }