@article{SiqueiraMolinnusBegingetal.2014, author = {Siqueira, Jose R. and Molinnus, Denise and Beging, Stefan and Sch{\"o}ning, Michael Josef}, title = {Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection}, series = {Analytical chemistry}, volume = {86}, journal = {Analytical chemistry}, number = {11}, publisher = {ACS Publications}, address = {Columbus}, issn = {1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print)}, doi = {10.1021/ac500458s}, pages = {5370 -- 5375}, year = {2014}, abstract = {The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.}, language = {en} } @article{MuribYeapMartensetal.2014, author = {Murib, Mohammed Sharif and Yeap, Weng-Siang and Martens, Daan and Bienstman, Peter and Ceuninck, Ward de and Grinsven, Bart van and Sch{\"o}ning, Michael Josef and Michiels, Luc and Haenen, Ken and Ameloot, Marcel and Serpeng{\"u}zel, Ali and Wagner, Patrick}, title = {Photonic detection and characterization of DNA using sapphire microspheres}, series = {Journal of biomedical optics}, volume = {19}, journal = {Journal of biomedical optics}, number = {9}, publisher = {SPIE}, address = {Bellingham}, issn = {1560-2281 (E-Journal); 1083-3668 (Print)}, doi = {10.1117/1.JBO.19.9.097006}, pages = {097006}, year = {2014}, abstract = {A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500  μm, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immobilized on a sapphire microsphere and hybridized with a 29-mer target DNA. Whispering gallery modes (WGMs) were monitored before the sapphire was functionalized with DNA and after it was functionalized with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The shift in WGMs from the surface modification with DNA was measured and correlated well with the estimated thickness of the add-on DNA layer. It is shown that ssDNA is more uniformly oriented on the sapphire surface than dsDNA. In addition, it is shown that functionalization of the sapphire spherical surface with DNA does not affect the quality factor (Q≈104) of the sapphire microspheres. The use of sapphire is especially interesting because this material is chemically resilient, biocompatible, and widely used for medical implants.}, language = {en} } @inproceedings{PieperSchulz2014, author = {Pieper, Martin and Schulz, Silvia}, title = {Teaching Simulation Methods with COMSOL Multiphysics}, organization = {COMSOL Conference <2014, Cambridge>}, pages = {7}, year = {2014}, abstract = {This paper describes two courses on simulation methods for graduate students: "Simulation Methods" and "Simulation and Optimization in Virtual Engineering" The courses were planned to teach young engineers how to work with simulation software as well as to understand the necessary mathematical background. As simulation software COMSOL is used. The main philosophy was to combine theory and praxis in a way that motivates the students. In addition "soft skills" should be improved. This was achieved by project work as final examination. As underlying didactical principle the ideas of Bloom's revised taxonomy were followed. The paper basically focusses on educational aspects, e.g. how to structure the course, plan the exercises, organize the project work and include practical COMSOL examples.}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution}, series = {Sensors and actuators B: Chemical}, volume = {204}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.08.016}, pages = {659 -- 665}, year = {2014}, abstract = {As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems.}, language = {en} } @incollection{NiemuellerEwertReuteretal.2014, author = {Niem{\"u}ller, Tim and Ewert, Daniel and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {RoboCup logistics league sponsored by festo: A competitive factory automation testbed}, series = {RoboCup 2013: Robot World Cup XVII : Eindhoven; Netherlands; 1 July 2013 through 1 July 2013. (Lecture notes in computer science ; 8371)}, booktitle = {RoboCup 2013: Robot World Cup XVII : Eindhoven; Netherlands; 1 July 2013 through 1 July 2013. (Lecture notes in computer science ; 8371)}, publisher = {Springer}, address = {Berlin}, organization = {RoboCup International Symposium <17, 2013, Eindhoven>}, isbn = {978-3-662-44467-2 (Print) 978-3-662-44468-9 (Online)}, pages = {336 -- 347}, year = {2014}, abstract = {A new trend in automation is to deploy so-called cyber-physical systems (CPS) which combine computation with physical processes. The novel RoboCup Logistics League Sponsored by Festo (LLSF) aims at such CPS logistic scenarios in an automation setting. A team of robots has to produce products from a number of semi-finished products which they have to machine during the game. Different production plans are possible and the robots need to recycle scrap byproducts. This way, the LLSF is a very interesting league offering a number of challenging research questions for planning, coordination, or communication in an application-driven scenario. In this paper, we outline the objectives of the LLSF and present steps for developing the league further towards a benchmark for logistics scenarios for CPS. As a major milestone we present the new automated referee system which helps in governing the game play as well as keeping track of the scored points in a very complex factory scenario.}, language = {en} } @article{KhaydukovaZadorozhnayaKirsanovetal.2014, author = {Khaydukova, M. M. and Zadorozhnaya, O. A. and Kirsanov, D. O. and Iken, Heiko and Rolka, David and Sch{\"o}ning, Michael Josef and Babain, V. A. and Vlasov, Yu. G. and Legin, A. V.}, title = {Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes}, series = {Russian journal of applied chemistry}, volume = {87}, journal = {Russian journal of applied chemistry}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1608-3296 (E-Journal); 1070-4272 (Print)}, doi = {10.1134/S1070427214030112}, pages = {307 -- 314}, year = {2014}, abstract = {The possibility of using the atomic-force microscopy as a method for detection of the analytical signal from plasticized polymeric sensor membranes was analyzed. The surfaces of cadmium-selective membranes based on two polymeric matrices were examined. The digital images were processed with multivariate image analysis techniques. A correlation was found between the surface profile of an ion-selective membrane and the concentration of the ion in solution.}, language = {en} } @article{HoltrupSadeghfamHeuermannetal.2014, author = {Holtrup, S. and Sadeghfam, Arash and Heuermann, Holger and Awakowicz, P.}, title = {Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters}, series = {IEEE transactions on microwave theories and techniques}, volume = {62}, journal = {IEEE transactions on microwave theories and techniques}, number = {10}, publisher = {IEEE}, address = {New York}, issn = {0018-9480}, doi = {10.1109/TMTT.2014.2342652}, pages = {2471 -- 2480}, year = {2014}, abstract = {High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation.}, language = {en} } @inproceedings{SchirraWatmuffBauschat2014, author = {Schirra, Julian and Watmuff, Jon and Bauschat, J.-Michael}, title = {A relative assessment of existing potential-methodologies to accurately estimate the induced drag of highly non-planar lifting systems}, series = {Advanced aero concepts, design and operations : Applied Aerodynamics Conference : July 22 -24, 2014, Bristol, UK}, booktitle = {Advanced aero concepts, design and operations : Applied Aerodynamics Conference : July 22 -24, 2014, Bristol, UK}, organization = {Applied Aerodynamics Conference <2014, Bristol>}, pages = {1 -- 13}, year = {2014}, language = {en} } @inproceedings{WetterKern2014, author = {Wetter, Martin and Kern, Alexander}, title = {Number of lightning strikes to tall structures - comparison of calculations and measurements using a modern lightning monitoring system}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {1 -- 7}, year = {2014}, language = {en} } @book{SchneiderSchneider2014, author = {Schneider, Bettina and Schneider, Wilhelm}, title = {Jahresabschluss und Jahresabschlussanalyse : systematische Darstellung in {\"U}bersichten. (Reihe Betriebswirtschaftslehre in {\"U}bersichten ; 2)}, edition = {5. Aufl., Studienausg.}, publisher = {Cuvillier}, address = {G{\"o}ttingen}, isbn = {978-3-95404-828-1}, pages = {Getr. Z{\"a}hlung : graph. Darst.}, year = {2014}, language = {de} }