@misc{RothkranzKrafftTippkoetter2022, author = {Rothkranz, Berit and Krafft, Simone and Tippk{\"o}tter, Nils}, title = {Media optimization for sustainable fuel production: How to produce biohydrogen from renewable resources with Thermotoga neapolitana}, series = {Chemie Ingenieur Technik}, volume = {94}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.202255305}, pages = {1298 -- 1299}, year = {2022}, abstract = {Hydrogen is playing an increasingly important role in research and politics as an energy carrier of the future. Since hydrogen has commonly been produced from methane by steam reforming, the need for climate-friendly, alternative production routes is emerging. In addition to electrolysis, fermentative routes for the production of so-called biohydrogen are "green" alternatives. The application of microorganisms offers the advantage of sustainable production from renewable resources using easily manageable technologies. In this project, the hyperthermophilic, anaerobic microorganism Thermotoga neapolitana is used for the productio nof biohydrogen from renewable resources. The enzymatically hydrolyzed resources were used in fermentation leading to yield coefficients of 1.8 mole H₂ per mole glucose when using hydrolyzed straw and ryegrass supplemented with medium, respectively. These results are similar to the hydrogen yields when using Thermotoga basal medium with glucose (TBGY) as control group. In order to minimize the supplementation of the hydrolysate and thus increase the economic efficiency of the process, the essential media components were identified. The experiments revealed NaCl, KCl, and glucose as essential components for cell growth as well as biohydrogen production. When excluding NaCl, a decrease of 96\% in hydrogen production occured.}, language = {en} } @article{FunkeBeckmann2022, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {13}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {2}, issn = {1882-5079}, pages = {1 -- 7}, year = {2022}, abstract = {The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.\% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance}, language = {en} } @article{StaeudleSeynnesLapsetal.2022, author = {St{\"a}udle, Benjamin and Seynnes, Olivier and Laps, Guido and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.792576}, pages = {12 Seiten}, year = {2022}, abstract = {Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s-1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36\%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49\% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task.}, language = {en} } @article{QuittmannAbelAlbrachtetal.2022, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Str{\"u}der, Heiko K.}, title = {Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants}, series = {Sports Biomechanics}, volume = {21}, journal = {Sports Biomechanics}, number = {10}, publisher = {Taylor \& Francis}, address = {London}, issn = {1752-6116 (Onlineausgabe)}, doi = {10.1080/14763141.2020.1745266}, pages = {1200 -- 1223}, year = {2022}, abstract = {This study aims to quantify the kinematics, kinetics and muscular activity of all-out handcycling exercise and examine their alterations during the course of a 15-s sprint test. Twelve able-bodied competitive triathletes performed a 15-s all-out sprint test in a recumbent racing handcycle that was attached to an ergometer. During the sprint test, tangential crank kinetics, 3D joint kinematics and muscular activity of 10 muscles of the upper extremity and trunk were examined using a power metre, motion capturing and surface electromyography (sEMG), respectively. Parameters were compared between revolution one (R1), revolution two (R2), the average of revolution 3 to 13 (R3) and the average of the remaining revolutions (R4). Shoulder abduction and internal-rotation increased, whereas maximal shoulder retroversion decreased during the sprint. Except for the wrist angles, angular velocity increased for every joint of the upper extremity. Several muscles demonstrated an increase in muscular activation, an earlier onset of muscular activation in crank cycle and an increased range of activation. During the course of a 15-s all-out sprint test in handcycling, the shoulder muscles and the muscles associated to the push phase demonstrate indications for short-duration fatigue. These findings are helpful to prevent injuries and improve performance in all-out handcycling.}, language = {en} } @article{vonHaefenKrautwaldStolleetal.2022, author = {von H{\"a}fen, Hajo and Krautwald, Clemens and Stolle, Jacob and Bung, Daniel Bernhard and Goseberg, Nils}, title = {Overland flow of broken solitary waves over a two-dimensional coastal plane}, series = {Coastal Engineering}, volume = {175}, journal = {Coastal Engineering}, number = {August}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7379}, doi = {10.1016/j.coastaleng.2022.104125}, pages = {14 Seiten}, year = {2022}, abstract = {Landslides, rock falls or related subaerial and subaqueous mass slides can generate devastating impulse waves in adjacent waterbodies. Such waves can occur in lakes and fjords, or due to glacier calving in bays or at steep ocean coastlines. Infrastructure and residential houses along coastlines of those waterbodies are often situated on low elevation terrain, and are potentially at risk from inundation. Impulse waves, running up a uniform slope and generating an overland flow over an initially dry adjacent horizontal plane, represent a frequently found scenario, which needs to be better understood for disaster planning and mitigation. This study presents a novel set of large-scale flume test focusing on solitary waves propagating over a 1:14.5 slope and breaking onto a horizontal section. Examining the characteristics of overland flow, this study gives, for the first time, insight into the fundamental process of overland flow of a broken solitary wave: its shape and celerity, as well as its momentum when wave breaking has taken place beforehand.}, language = {en} } @article{MarinkovicButenweg2022, author = {Marinkovic, Marko and Butenweg, Christoph}, title = {Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames}, series = {Engineering Structures}, volume = {272}, journal = {Engineering Structures}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.114959}, pages = {18 Seiten}, year = {2022}, abstract = {Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill's and frame's geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames.}, language = {en} } @incollection{MoorkampPetersonUibel2022, author = {Moorkamp, Wilfried and Peterson, Leif Arne and Uibel, Thomas}, title = {Nachhaltige Holzbr{\"u}cken f{\"u}r Geh- und Radwege}, series = {Bauphysik Kalender 2022: Holzbau, 22. Jahrgang}, booktitle = {Bauphysik Kalender 2022: Holzbau, 22. Jahrgang}, editor = {Fouad, Nabil A.}, publisher = {Ernst \& Sohn}, address = {Berlin}, isbn = {9783433033609 (Print)}, doi = {10.1002/9783433611081.ch17}, pages = {574 -- 592}, year = {2022}, abstract = {Am Lehr- und Forschungsgebiet Holzbau der Fachhochschule Aachen wurden im Rahmen des Forschungsvorhabens „Nachhaltige Standardbr{\"u}cken in Holzbauweise" Standardtypen f{\"u}r Geh- und Radwegbr{\"u}cken entwickelt. Die Br{\"u}cken sind durch konsequente Umsetzungen von Maßnahmen des konstruktiven Holzschutzes f{\"u}r eine Nutzung von mehr als 80~Jahren konzipiert. Innovative L{\"o}sungen f{\"u}r Bauteile und Anschl{\"u}sse sowie Materialalternativen im Bereich des Belages und der Gel{\"a}nder erm{\"o}glichen eine wartungsarme Konstruktion und tragen somit zur Wirtschaftlichkeit und Nachhaltigkeit bei. Um den Einsatz der entwickelten Standardbr{\"u}ckentypen in der Praxis zu erleichtern, wurden Leistungsverzeichnisse, Musterstatiken, Musterzeichnungen und umfangreiche Detailkataloge als Unterst{\"u}tzung f{\"u}r Planer und Bauherren erstellt. Damit die Randbedingungen f{\"u}r eine lange Lebensdauer w{\"a}hrend der Nutzung der Br{\"u}cke erhalten bleiben, wurden Leitf{\"a}den f{\"u}r die Pflege und Wartung sowie f{\"u}r die Br{\"u}ckenpr{\"u}fung erarbeitet. Der Beitrag gibt Einblicke in das Forschungsvorhaben und seine Resultate.}, language = {de} } @article{Finkenberger2022, author = {Finkenberger, Isabel Maria}, title = {Strukturwandel als transformative Wende}, series = {disP: The Planning Review}, volume = {58}, journal = {disP: The Planning Review}, number = {3}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {0251-3625}, doi = {10.1080/02513625.2022.2158603}, pages = {86 -- 94}, year = {2022}, language = {de} } @incollection{Finkenberger2022, author = {Finkenberger, Isabel Maria}, title = {R{\"a}umliche Transformation als Planungsaufgabe}, series = {Zur{\"u}ck in die Zukunft. Denkmalpflege und Strukturwandel im Rheinischen Revier}, booktitle = {Zur{\"u}ck in die Zukunft. Denkmalpflege und Strukturwandel im Rheinischen Revier}, editor = {Pufke, Andrea}, publisher = {LVR-Amt f{\"u}r Denkmalpflege im Rheinland}, address = {Pulheim}, pages = {70 -- 77}, year = {2022}, language = {de} } @article{Finkenberger2022, author = {Finkenberger, Isabel Maria}, title = {Transformatives Forschen, Lehren und Handeln im Rheinischen Braunkohlerevier}, series = {Forum Wohnen und Stadtentwicklung}, volume = {2022}, journal = {Forum Wohnen und Stadtentwicklung}, number = {2}, publisher = {vhw}, address = {Berlin}, issn = {1439-7242}, pages = {69 -- 72}, year = {2022}, abstract = {Die Institution Hochschule hat das Potenzial, {\"u}ber transformatives Forschen und Lehren und den entsprechenden Wissenstransfer in den lokalen Kontext strategisch-verl{\"a}ssliche Partnerin der Großen Transformation zur Nachhaltigkeit zu werden und bei der Ausbildung von Pionierinnen und Pionieren des Wandels mitzuwirken. Der Lehr- und Forschungsschwerpunkt „Zukunftsf{\"a}hige Transformation" am Fachbereich Architektur der FH Aachen widmet sich seit 2020 dem Tagebauumfeld Hambach im Rheinischen Revier, um dort angewandt und in Kooperation neue Narrative, innovative Prozesse, ortsbezogene Konzepte und strategische Projekte zu entwickeln und umzusetzen.}, language = {de} }