@article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{DuenkelmannKolterJungNitscheetal.2002, author = {D{\"u}nkelmann, Pascal and Kolter-Jung, Doris and Nitsche, Adam and Demir, Ayhan S. and Siegert, Petra and Lingen, Bettina and Baumann, Martin and Pohl, Martina and M{\"u}ller, Michael}, title = {Development of a donor-acceptor concept for enzymatic cross-coupling reactions of adehydes : the first asymmetric cross-benzoin condensation}, series = {Journal of the American Chemical Society}, volume = {Vol. 124}, journal = {Journal of the American Chemical Society}, issn = {1520-5126 (E-Journal); 0002-7863 (Print)}, pages = {12084 -- 12085}, year = {2002}, language = {en} } @article{DuennwaldDemirSiegertetal.2000, author = {D{\"u}nnwald, Thomas and Demir, Ayhan S. and Siegert, Petra and Pohl, Martina and M{\"u}ller, Michael}, title = {Enantioselective Synthesis of (S)-2-Hydroxypropanone Derivatives by Benzoylformate Decarboxylase Catalyzed C-C Bond Formation}, series = {European journal of organic chemistry}, volume = {Vol. 2000}, journal = {European journal of organic chemistry}, number = {Iss. 11}, issn = {0365-5490 (E-Journal); 1099-0690 (E-Journal); 0075-4617 (Print); 0170-2041 (Print); 0947-3440 (Print); 1434-193X (Print); 1434-243X (Print)}, pages = {2161 -- 2170}, year = {2000}, language = {en} } @article{NiehausGaborWielandetal.2011, author = {Niehaus, F. and Gabor, E. and Wieland, S. and Siegert, Petra and Maurer, Karl-Heinz and Eck, J.}, title = {Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases}, series = {Microbial biotechnology}, volume = {Vol. 4}, journal = {Microbial biotechnology}, number = {Iss. 6}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print)}, pages = {767 -- 776}, year = {2011}, language = {en} } @article{SiegertMcLeishBaumannetal.2005, author = {Siegert, Petra and McLeish, Michael J. and Baumann, Martin and Iding, Hans and Kneen, Malea M. and Kenyon, George L. and Pohl, Martina}, title = {Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida}, series = {Protein engineering, design, and selection : peds}, volume = {Vol. 18}, journal = {Protein engineering, design, and selection : peds}, number = {Iss. 7}, issn = {1460-213X (E-Journal); 1741-0134 (E-Journal); 0269-2139 (Print); 1741-0126 (Print)}, pages = {345 -- 357}, year = {2005}, language = {en} } @incollection{SiegertPohlKneenetal.2004, author = {Siegert, Petra and Pohl, Martina and Kneen, Malea M. and Pogozheva, Irina D. and Kenyon, George L. and McLeish, Michael J.}, title = {Exploring the substrate specificity of benzoylformate decarboxylase, pyruvate decarboxylase, and benzaldehyde lyase}, series = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, booktitle = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, publisher = {Dekker}, address = {New York, NY}, isbn = {0-8247-4062-9}, pages = {275 -- 290}, year = {2004}, language = {en} } @article{RibitschHeumannKarletal.2012, author = {Ribitsch, D. and Heumann, S. and Karl, W. and Gerlach, J. and Leber, R. and Birner-Gruenberger, R. and Gruber, K. and Eiteljoerg, I. and Remler, P. and Siegert, Petra and Lange, J. and Maurer, Karl-Heinz and Berg, G. and Guebitz, G. M. and Schwab, H.}, title = {Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli}, series = {Journal of biotechnology}, volume = {157}, journal = {Journal of biotechnology}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2011.09.025}, pages = {140 -- 147}, year = {2012}, abstract = {A large strain collection comprising antagonistic bacteria was screened for novel detergent proteases. Several strains displayed protease activity on agar plates containing skim milk but were inactive in liquid media. Encapsulation of cells in alginate beads induced protease production. Stenotrophomonas maltophilia emerged as best performer under washing conditions. For identification of wash-active proteases, four extracellular serine proteases called StmPr1, StmPr2, StmPr3 and StmPr4 were cloned. StmPr2 and StmPr4 were sufficiently overexpressed in E. coli. Expression of StmPr1 and StmPr3 resulted in unprocessed, insoluble protein. Truncation of most of the C-terminal domain which has been identified by enzyme modeling succeeded in expression of soluble, active StmPr1 but failed in case of StmPr3. From laundry application tests StmPr2 turned out to be a highly wash-active protease at 45 °C. Specific activity of StmPr2 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 17 ± 2 U/mg. In addition we determined the kinetic parameters and cleavage preferences of protease StmPr2.}, language = {en} } @misc{MaurerO'ConnellSiegertetal.2012, author = {Maurer, Karl-Heinz and O'Connell, Timothy and Siegert, Petra and Weber, Thomas and Tondera, Susanne and Hellmuth, Hendrik}, title = {Fl{\"u}ssige Tensidzubereitung enthaltend Lipase und Phosphonat [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 22}, year = {2012}, language = {de} }