@inproceedings{HofmannLimpertMatareetal.2019, author = {Hofmann, Till and Limpert, Nicolas and Matar{\´e}, Viktor and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Winning the RoboCup Logistics League with Fast Navigation, Precise Manipulation, and Robust Goal Reasoning}, series = {RoboCup 2019: Robot World Cup XXIII. RoboCup}, booktitle = {RoboCup 2019: Robot World Cup XXIII. RoboCup}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-35699-6}, doi = {10.1007/978-3-030-35699-6_41}, pages = {504 -- 516}, year = {2019}, language = {en} } @inproceedings{HofmannMatareNeumannetal.2018, author = {Hofmann, Till and Matar{\´e}, Victor and Neumann, Tobias and Sch{\"o}nitz, Sebastian and Henke, Christoph and Limpert, Nicolas and Niemueller, Tim and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Enhancing Software and Hardware Reliability for a Successful Participation in the RoboCup Logistics League 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-00308-1}, doi = {10.1007/978-3-030-00308-1_40}, pages = {486 -- 497}, year = {2018}, language = {en} } @inproceedings{HofmannMatareSchifferetal.2018, author = {Hofmann, Till and Matar{\´e}, Victor and Schiffer, Stefan and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Constraint-based online transformation of abstract plans into executable robot actions}, series = {Proceedings of the 2018 AAAI Spring Symposium on Integrating Representation, Reasoning, Learning, and Execution for Goal Directed Autonomy}, booktitle = {Proceedings of the 2018 AAAI Spring Symposium on Integrating Representation, Reasoning, Learning, and Execution for Goal Directed Autonomy}, pages = {549 -- 553}, year = {2018}, language = {en} } @article{HoltrupSadeghfamHeuermannetal.2014, author = {Holtrup, S. and Sadeghfam, Arash and Heuermann, Holger and Awakowicz, P.}, title = {Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters}, series = {IEEE transactions on microwave theories and techniques}, volume = {62}, journal = {IEEE transactions on microwave theories and techniques}, number = {10}, publisher = {IEEE}, address = {New York}, issn = {0018-9480}, doi = {10.1109/TMTT.2014.2342652}, pages = {2471 -- 2480}, year = {2014}, abstract = {High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation.}, language = {en} } @article{HulseboschGuentherHornetal.2004, author = {Hulsebosch, R. J. and G{\"u}nther, C. and Horn, C. and Holtmanns, S. and Howker, K. and Paterson, K. and Claessens, J. and Schuba, Marko}, title = {Pioneering Advanced Mobile Privacy and Security}, series = {Security for mobility}, journal = {Security for mobility}, editor = {Mitchell, Chris J.}, publisher = {Institution of Electrical Engineers}, address = {London}, isbn = {9781849190886}, doi = {10.1049/PBTE051E_ch}, pages = {383 -- 432}, year = {2004}, language = {en} } @book{Huening2001, author = {H{\"u}ning, Felix}, title = {Magnetische Eigenschaften niederdimensionaler Chrom-, Ruthenium- und Niobhalogenide}, publisher = {Shaker}, address = {Aachen}, isbn = {3-8265-8551-8}, pages = {II, 122 S Ill., graph. Darst.}, year = {2001}, language = {en} } @article{Huening2008, author = {H{\"u}ning, Felix}, title = {Entwicklungstrends bei MOSFETs f{\"u}r den Automobilbereich}, series = {Elektronik-Industrie . 39 (2008), H. 5}, journal = {Elektronik-Industrie . 39 (2008), H. 5}, publisher = {-}, isbn = {0174-5522}, pages = {74 -- 76}, year = {2008}, language = {en} } @article{Huening2009, author = {H{\"u}ning, Felix}, title = {SMD packages for PowerMOSFETs in automotive applications - developments and trends}, series = {Automotive Designline Europe (2009)}, journal = {Automotive Designline Europe (2009)}, publisher = {-}, year = {2009}, language = {en} } @article{Huening2012, author = {H{\"u}ning, Felix}, title = {Using Trench PowerMOSFETs in Linear Mode}, series = {Power Electronics Europe (2012)}, journal = {Power Electronics Europe (2012)}, publisher = {DFA Media}, address = {Tonbridge}, issn = {1748-3530}, pages = {27 -- 29}, year = {2012}, abstract = {If we think about applications for modern Power MOSFETs using trench technology, running them in linear mode may not be top of the priority list. Yet there are multiple uses for Trench Power MOSFETs in linear mode. In fact, even turning the device on and off in switching applications is a form of linear operation. Also, these components can be run in linear mode to protect the device against voltage surges. This article will illustrate the factors that need to be considered for linear operation and show how Trench Power MOSFETs are suited to it.}, language = {en} } @book{Huening2014, author = {H{\"u}ning, Felix}, title = {The fundamentals of electrical engineering for mechatronics}, publisher = {de Gruyter}, address = {Berlin}, isbn = {978-3-11-034991-7 (Druckausg.)}, pages = {IX, 208 S.}, year = {2014}, language = {en} }