@inproceedings{SchubertSchoening2010, author = {Schubert, Nicole and Sch{\"o}ning, Michael Josef}, title = {3. Graduiertentagung der FH Aachen}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3386}, year = {2010}, abstract = {Doktoranden der FH Aachen stellen ihre wissenschaftlichen Arbeiten aus verschiedenen Fachdisziplinen vor.}, subject = {Graduiertentagung}, language = {mul} } @article{RensVarzinczakMeyeretal.2010, author = {Rens, Gavin and Varzinczak, Ivan and Meyer, Thomas and Ferrein, Alexander}, title = {A Logic for Reasoning about Actions and Explicit Observations}, series = {AI 2010: Advances in Artificial Intelligence 23rd Australasian Joint Conference, Adelaide, Australia, December 7-10, 2010. Proceedings}, journal = {AI 2010: Advances in Artificial Intelligence 23rd Australasian Joint Conference, Adelaide, Australia, December 7-10, 2010. Proceedings}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-17431-5}, pages = {395 -- 404}, year = {2010}, language = {en} } @article{NiemuellerFerreinLakemeyer2010, author = {Niem{\"u}ller, Tim and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {A Lua-based Behavior Engine for Controlling the Humanoid Robot Nao}, series = {RoboCup 2009: Robot Soccer World Cup XIII}, journal = {RoboCup 2009: Robot Soccer World Cup XIII}, pages = {240 -- 251}, year = {2010}, language = {en} } @article{FrauenrathHezelRenzetal.2010, author = {Frauenrath, Tobias and Hezel, Fabian and Renz, Wolfgang and de Geyer d'Orth, Thibaut and Dieringer, Matthias and von Knobelsdorf-Brenkenhoff, Florian and Prothmann, Marcel and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {12}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1532-429X}, doi = {10.1186/1532-429X-12-67}, year = {2010}, abstract = {Background To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms. Results ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30\% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms. Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34). Conclusions The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.}, language = {en} } @article{KraffBitzDammannetal.2010, author = {Kraff, Oliver and Bitz, Andreas and Dammann, Philipp and Ladd, Susanne C. and Ladd, Mark E. and Quick, Harald H.}, title = {An eight-channel transmit/receive multipurpose coil for musculoskeletal MR imaging at 7 T}, series = {Medical Physics}, volume = {37}, journal = {Medical Physics}, number = {12}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2473-4209}, doi = {10.1118/1.3517176}, pages = {6368 -- 6376}, year = {2010}, abstract = {Purpose: MRI plays a leading diagnostic role in assessing the musculoskeletal (MSK) system and is well established for most questions at clinically used field strengths (up to 3 T). However, there are still limitations in imaging early stages of cartilage degeneration, very fine tendons and ligaments, or in locating nerve lesions, for example. 7 T MRI of the knee has already received increasing attention in the current published literature, but there is a strong need to develop new radiofrequency (RF) coils to assess more regions of the MSK system. In this work, an eight-channel transmit/receive RF array was built as a multipurpose coil for imaging some of the thus far neglected regions. An extensive coil characterization protocol and first in vivo results of the human wrist, shoulder, elbow, knee, and ankle imaged at 7 T will be presented. Methods: Eight surface loop coils with a dimension ofurn:x-wiley:00942405:media:mp7176:mp7176-math-0001 were machined from FR4 circuit board material. To facilitate easy positioning, two coil clusters, each with four loop elements, were combined to one RF transmit/receive array. An overlapped and shifted arrangement of the coil elements was chosen to reduce the mutual inductance between neighboring coils. A phantom made of body-simulating liquid was used for tuning and matching on the bench. Afterward, the S-parameters were verified on a human wrist, elbow, and shoulder. For safety validation, a detailed compliance test was performed including full wave simulations of the RF field distribution and the corresponding specific absorption rate (SAR) for all joints. In vivo images of four volunteers were assessed with gradient echo and spin echo sequences modified to obtain optimal image contrast, full anatomic coverage, and the highest spatial resolution within a reasonable acquisition time. The performance of the RF coil was additionally evaluated by in vivo B1 mapping. Results: A comparison of B1 per unit power, flip angle distribution, and anatomic images showed a fairly homogeneous excitation for the smaller joints (elbow, wrist, and ankle), while for the larger joints, the shoulder and especially the knee, B1 inhomogeneities and limited penetration depth were more pronounced. However, the greater part of the shoulder joint could be imaged.In vivo images rendered very fine anatomic details such as fascicles of the median nerve and the branching of the nerve bundles. High-resolution images of cartilage, labrum, and tendons could be acquired. Additionally, turbo spin echo (TSE) and inversion recovery sequences performed very well. Conclusions: This study demonstrates that the concept of two four-channel transmit/receive RF arrays can be used as a multipurpose coil for high-resolutionin vivo MR imaging of the musculoskeletal system at 7 T. Not only gradient echo but also typical clinical and SAR-intensive sequences such as STIR and TSE performed well. Imaging of small structures and peripheral nerves could in particular benefit from this technique.}, language = {en} } @inproceedings{DammRitzStrauch2010, author = {Damm, Sebastian and Ritz, Thomas and Strauch, Jakob}, title = {Benutzerzentrierte Anforderungsanalyse f{\"u}r die Produktlinien-Entwicklung mobiler Unternehmenssoftware}, series = {EMISA 2010 : Einflussfaktoren auf die Entwicklung flexibler, integrierter Informationssysteme ; Beitr{\"a}ge des Workshops der GI-Fachgruppe Entwicklungsmethoden f{\"u}r Informationssysteme und deren Anwendung (EMISA), 07. - 08.10.2010 in Karlsruhe, Germany. - (GI-Edition : Proceedings ; 172)}, booktitle = {EMISA 2010 : Einflussfaktoren auf die Entwicklung flexibler, integrierter Informationssysteme ; Beitr{\"a}ge des Workshops der GI-Fachgruppe Entwicklungsmethoden f{\"u}r Informationssysteme und deren Anwendung (EMISA), 07. - 08.10.2010 in Karlsruhe, Germany. - (GI-Edition : Proceedings ; 172)}, editor = {Klink, Stefan}, publisher = {Ges. f{\"u}r Informatik}, address = {Bonn}, isbn = {978-3-88579-266-6}, pages = {117 -- 130}, year = {2010}, language = {de} } @article{vonKnobelsdorfBrenkenhoffFrauenrathProthmannetal.2010, author = {von Knobelsdorf-Brenkenhoff, Florian and Frauenrath, Tobias and Prothmann, Marcel and Dieringer, Matthias A. and Hezel, Fabian and Renz, Wolfgang and Kretschel, Kerstin and Niendorf, Thoralf and Schulz-Menger, Jeanette}, title = {Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study}, volume = {20}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {0938-7994}, doi = {10.1007/s00330-010-1888-2}, pages = {2844 -- 2852}, year = {2010}, abstract = {Objectives Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T. Methods A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T, steady-state free precession (SSFP) and fast gradient echo (FGRE) cine imaging with 7 mm slice thickness (STH) were used. At 7 T, FGRE with 7 mm and 4 mm STH were applied. End-diastolic volume, end-systolic volume, ejection fraction and mass were calculated. Results All 7 T examinations provided excellent blood/myocardium contrast for all slice directions. No significant difference was found regarding ejection fraction and cardiac volumes between SSFP at 1.5 T and FGRE at 7 T, while volumes obtained from FGRE at 1.5 T were underestimated. Cardiac mass derived from FGRE at 1.5 and 7 T was larger than obtained from SSFP at 1.5 T. Agreement of volumes and mass between SSFP at 1.5 T and FGRE improved for FGRE at 7 T when combined with an STH reduction to 4 mm. Conclusions This pilot study demonstrates that cardiac chamber quantification at 7 T using FGRE is feasible and agrees closely with SSFP at 1.5 T.}, language = {en} } @inproceedings{SchmiegelKochDittmeretal.2010, author = {Schmiegel, A. and Koch, K. and Dittmer, M. and Braun, M. and Landau, M. and Dick, C. and Bragard, Michael and [u.a.],}, title = {Das Sol-ion System : ein System zur Optimierung des Eigenverbrauchs von PV-Strom}, series = {Photovoltaische Solarenergie : 25. Symposium ; 03. - 05. M{\"a}rz 2010, Kloster Banz, Bad Staffelstein. - (Wissen f{\"u}r Profis)}, booktitle = {Photovoltaische Solarenergie : 25. Symposium ; 03. - 05. M{\"a}rz 2010, Kloster Banz, Bad Staffelstein. - (Wissen f{\"u}r Profis)}, publisher = {OTTI, Ostbayerisches Technologie-Transfer-Inst.}, address = {Regensburg}, isbn = {978-3-941785-23-6}, pages = {354 -- 359}, year = {2010}, language = {de} } @inproceedings{BragardSoltauDeDonckeretal.2010, author = {Bragard, Michael and Soltau, N. and De Doncker, R. W. and Schmiegel, A.}, title = {Design and implementation of a 5 kW photovoltaic system with li-ion battery and additional DC-DC converter}, series = {2010 IEEE Energy Conversion Congress and Exposition (ECCE 2010) : Atlanta, Georgia, USA, 12 - 16 September 2010 / [sponsored by the IEEE Power Electronics and Industry Applications Societies]}, booktitle = {2010 IEEE Energy Conversion Congress and Exposition (ECCE 2010) : Atlanta, Georgia, USA, 12 - 16 September 2010 / [sponsored by the IEEE Power Electronics and Industry Applications Societies]}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-4244-5286-6 (Print)}, doi = {10.1109/ECCE.2010.5618220}, pages = {2944 -- 2949}, year = {2010}, language = {en} } @article{NiemuellerFerreinBecketal.2010, author = {Niem{\"u}ller, Tim and Ferrein, Alexander and Beck, Daniel and Lakemeyer, Gerhard}, title = {Design Principles of the Component-Based Robot Software Framework Fawkes}, series = {Simulation, Modeling, and Programming for Autonomous Robots}, journal = {Simulation, Modeling, and Programming for Autonomous Robots}, pages = {300 -- 311}, year = {2010}, language = {en} }