@techreport{ThomaLaarmannMerkensetal.2020, author = {Thoma, Andreas and Laarmann, Lukas and Merkens, Torsten and Franzke, Till and M{\"o}hren, Felix and Buttermann, Lilly and van der Weem, Dirk and Fischer, Maximilian and Misch, Philipp and B{\"o}hme, Mirijam and R{\"o}th, Thilo and Hebel, Christoph and Ritz, Thomas and Franke, Marina and Braun, Carsten}, title = {Entwicklung eines intermodalen Mobilit{\"a}tskonzeptes f{\"u}r die Pilotregion NRW/Rhein-Maas Euregio und Schaffung voller Kundenakzeptanz durch Transfer von Standards aus dem PKW-Bereich auf ein Flugtaxi : Schlussbericht : Projektakronym: SkyCab (Kategorie B) : Laufzeit in Monaten: 6 : Hauptthema: Kategorie B: Innovative Ideen mit Bezug zu UAS/Flugtaxis}, publisher = {FH Aachen}, address = {Aachen}, pages = {97 Seiten}, year = {2020}, language = {de} } @inproceedings{NeesStengelMeisteretal.2020, author = {Nees, Franz and Stengel, Ingo and Meister, Vera G. and Barton, Thomas and Herrmann, Frank and M{\"u}ller, Christian and Wolf, Martin R.}, title = {Angewandte Forschung in der Wirtschaftsinformatik 2020 : Tagungsband zur 33. AKWI-Jahrestagung am 14.09.2020, ausgerichtet von der Hochschule Karlsruhe - Wirtschaft und Technik / hrsg. von Franz Nees, Ingo Stengel, Vera G. Meister, Thomas Barton, Frank Herrmann, Christian M{\"u}ller, Martin R. Wolf}, publisher = {mana-Buch}, address = {Heide}, isbn = {978-3-944330-66-2}, doi = {10.15771/978-3-944330-66-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-13840}, pages = {147 Seiten}, year = {2020}, abstract = {Tagungsbeitr{\"a}ge aus den Bereichen KI, Prozessorganisation und Plattformen f{\"u}r Gesch{\"a}ftsprozesse, Sicherheit und Datenschutz sowie Prototypen und Modelle.}, language = {de} } @inproceedings{KirschMatareFerreinetal.2020, author = {Kirsch, Maximilian and Matar{\´e}, Victor and Ferrein, Alexander and Schiffer, Stefan}, title = {Integrating golog++ and ROS for Practical and Portable High-level Control}, series = {Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2}, booktitle = {Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2}, publisher = {SciTePress}, address = {Set{\´u}bal, Portugal}, doi = {10.5220/0008984406920699}, pages = {692 -- 699}, year = {2020}, abstract = {The field of Cognitive Robotics aims at intelligent decision making of autonomous robots. It has matured over the last 25 or so years quite a bit. That is, a number of high-level control languages and architectures have emerged from the field. One concern in this regard is the action language GOLOG. GOLOG has been used in a rather large number of applications as a high-level control language ranging from intelligent service robots to soccer robots. For the lower level robot software, the Robot Operating System (ROS) has been around for more than a decade now and it has developed into the standard middleware for robot applications. ROS provides a large number of packages for standard tasks in robotics like localisation, navigation, and object recognition. Interestingly enough, only little work within ROS has gone into the high-level control of robots. In this paper, we describe our approach to marry the GOLOG action language with ROS. In particular, we present our architecture on inte grating golog++, which is based on the GOLOG dialect Readylog, with the Robot Operating System. With an example application on the Pepper service robot, we show how primitive actions can be easily mapped to the ROS ActionLib framework and present our control architecture in detail.}, language = {en} } @book{Muehl2020, author = {M{\"u}hl, Thomas}, title = {Elektrische Messtechnik: Grundlagen, Messverfahren, Anwendungen}, edition = {6., {\"u}berarbeitete Auflage}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-29115-0}, doi = {10.1007/978-3-658-29116-7}, pages = {XVIII, 306 Seiten ; Illustrationen}, year = {2020}, language = {de} } @article{FiedlerLaddClemensetal.2020, author = {Fiedler, Thomas M. and Ladd, Mark E. and Clemens, Markus and Bitz, Andreas}, title = {Safety of subjects during radiofrequency exposure in ultra-high-field magnetic resonance imaging}, series = {IEEE Letters on Electromagnetic Compatibility Practice and Applications}, volume = {2}, journal = {IEEE Letters on Electromagnetic Compatibility Practice and Applications}, number = {3}, publisher = {IEEE}, address = {New York, NY}, isbn = {2637-6423}, doi = {10.1109/LEMCPA.2020.3029747}, pages = {1 -- 8}, year = {2020}, abstract = {Magnetic resonance imaging (MRI) is one of the most important medical imaging techniques. Since the introduction of MRI in the mid-1980s, there has been a continuous trend toward higher static magnetic fields to obtain i.a. a higher signal-to-noise ratio. The step toward ultra-high-field (UHF) MRI at 7 Tesla and higher, however, creates several challenges regarding the homogeneity of the spin excitation RF transmit field and the RF exposure of the subject. In UHF MRI systems, the wavelength of the RF field is in the range of the diameter of the human body, which can result in inhomogeneous spin excitation and local SAR hotspots. To optimize the homogeneity in a region of interest, UHF MRI systems use parallel transmit systems with multiple transmit antennas and time-dependent modulation of the RF signal in the individual transmit channels. Furthermore, SAR increases with increasing field strength, while the SAR limits remain unchanged. Two different approaches to generate the RF transmit field in UHF systems using antenna arrays close and remote to the body are investigated in this letter. Achievable imaging performance is evaluated compared to typical clinical RF transmit systems at lower field strength. The evaluation has been performed under consideration of RF exposure based on local SAR and tissue temperature. Furthermore, results for thermal dose as an alternative RF exposure metric are presented.}, language = {en} } @article{HueningBackes2020, author = {H{\"u}ning, Felix and Backes, Andreas}, title = {Direct observation of large Barkhausen jump in thin Vicalloy wires}, series = {IEEE Magnetics Letters}, volume = {11}, journal = {IEEE Magnetics Letters}, number = {Art. 2506504}, publisher = {IEEE}, address = {New York, NY}, isbn = {1949-307X}, doi = {10.1109/LMAG.2020.3046411}, pages = {1 -- 4}, year = {2020}, language = {en} } @article{HueningDeMatteis2020, author = {H{\"u}ning, Felix and De Matteis, Stefan}, title = {Entwicklung eines taktilen HMI f{\"u}r sehbehinderte und blinde Nutzerinnen und Nutzer}, series = {Blind - sehbehindert}, volume = {140}, journal = {Blind - sehbehindert}, number = {2}, publisher = {Edition Bentheim}, address = {W{\"u}rzburg}, issn = {0176-7836}, pages = {9 -- 19}, year = {2020}, language = {de} } @inproceedings{DinghoferHartung2020, author = {Dinghofer, Kai and Hartung, Frank}, title = {Analysis of Criteria for the Selection of Machine Learning Frameworks}, series = {2020 International Conference on Computing, Networking and Communications (ICNC)}, booktitle = {2020 International Conference on Computing, Networking and Communications (ICNC)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ICNC47757.2020.9049650}, pages = {373 -- 377}, year = {2020}, abstract = {With the many achievements of Machine Learning in the past years, it is likely that the sub-area of Deep Learning will continue to deliver major technological breakthroughs [1]. In order to achieve best results, it is important to know the various different Deep Learning frameworks and their respective properties. This paper provides a comparative overview of some of the most popular frameworks. First, the comparison methods and criteria are introduced and described with a focus on computer vision applications: Features and Uses are examined by evaluating papers and articles, Adoption and Popularity is determined by analyzing a data science study. Then, the frameworks TensorFlow, Keras, PyTorch and Caffe are compared based on the previously described criteria to highlight properties and differences. Advantages and disadvantages are compared, enabling researchers and developers to choose a framework according to their specific needs.}, language = {en} } @article{Koehler2020, author = {K{\"o}hler, Klemens}, title = {A conflict theory perspective of IT attacks - consequences for IT security education}, number = {Preprint}, year = {2020}, abstract = {Cyberspace is "the environment formed by physical and non-physical components to store, modify, and exchange data using computer networks" (NATO CCDCOE). Beyond that, it is an environment where people interact. IT attacks are hostile, non-cooperative interactions that can be described with conflict theory. Applying conflict theory to IT security leads to different objectives for end-user education, requiring different formats like agency-based competence developing games.}, language = {en} } @inproceedings{LeiseBreuerAltherretal.2020, author = {Leise, Philipp and Breuer, Tim and Altherr, Lena and Pelz, Peter F.}, title = {Development, validation and assessment of a resilient pumping system}, series = {Proceedings of the Joint International Resilience Conference, JIRC2020}, booktitle = {Proceedings of the Joint International Resilience Conference, JIRC2020}, isbn = {978-90-365-5095-6}, pages = {97 -- 100}, year = {2020}, abstract = {The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour.}, language = {en} }