@inproceedings{ElgamalHeuermann2020, author = {Elgamal, Abdelrahman and Heuermann, Holger}, title = {Design and Development of a Hot S-Parameter Measurement System for Plasma and Magnetron Applications}, series = {2020 German Microwave Conference (GeMiC), Cottbus, Germany, 2020}, booktitle = {2020 German Microwave Conference (GeMiC), Cottbus, Germany, 2020}, isbn = {978-3-9820397-1-8}, pages = {124 -- 127}, year = {2020}, language = {en} } @inproceedings{FerreinMeessenLimpertetal.2021, author = {Ferrein, Alexander and Meeßen, Marcus and Limpert, Nicolas and Schiffer, Stefan}, title = {Compiling ROS Schooling Curricula via Contentual Taxonomies}, series = {Robotics in Education}, booktitle = {Robotics in Education}, editor = {Lepuschitz, Wilfried}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-67411-3}, doi = {10.1007/978-3-030-67411-3_5}, pages = {49 -- 60}, year = {2021}, language = {en} } @inproceedings{HeuermannHarzheimMuehmel2021, author = {Heuermann, Holger and Harzheim, Thomas and M{\"u}hmel, Marc}, title = {A maritime harmonic radar search and rescue system using passive and active tags}, series = {2020 17th European Radar Conference (EuRAD)}, booktitle = {2020 17th European Radar Conference (EuRAD)}, publisher = {IEEE}, isbn = {978-2-87487-061-3}, doi = {10.1109/EuRAD48048.2021.00030}, pages = {73 -- 76}, year = {2021}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {Sensoren und Messsysteme 2022}, booktitle = {Sensoren und Messsysteme 2022}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} } @inproceedings{ChircuCzarneckiFriedmannetal.2023, author = {Chircu, Alina and Czarnecki, Christian and Friedmann, Daniel and Pomaskow, Johanna and Sultanow, Eldar}, title = {Towards a Digital Twin of Society}, series = {Proceedings of the 56th Hawaii International Conference on System Sciences 2023}, booktitle = {Proceedings of the 56th Hawaii International Conference on System Sciences 2023}, publisher = {University of Hawai'i}, address = {Honolulu}, isbn = {978-0-9981331-6-4}, pages = {6748 -- 6757}, year = {2023}, abstract = {This paper describes the potential for developing a digital twin of society- a dynamic model that can be used to observe, analyze, and predict the evolution of various societal aspects. Such a digital twin can help governmental agencies and policy makers in interpreting trends, understanding challenges, and making decisions regarding investments or policies necessary to support societal development and ensure future prosperity. The paper reviews related work regarding the digital twin paradigm and its applications. The paper presents a motivating case study- an analysis of opportunities and challenges faced by the German federal employment agency, Bundesagentur f¨ur Arbeit (BA), proposes solutions using digital twins, and describes initial proofs of concept for such solutions.}, language = {en} } @inproceedings{NikolovskiLimpertNessauetal.2023, author = {Nikolovski, Gjorgji and Limpert, Nicolas and Nessau, Hendrik and Reke, Michael and Ferrein, Alexander}, title = {Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles}, series = {2023 IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {2023 IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {979-8-3503-4691-6 (Online)}, doi = {10.1109/IV55152.2023.10186806}, pages = {6 Seiten}, year = {2023}, abstract = {The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle's drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment.}, language = {en} } @inproceedings{Elsen1998, author = {Elsen, Ingo}, title = {A pixel based approach to view based object recognition with self-organizing neural networks}, series = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, booktitle = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4503-7}, doi = {10.1109/IECON.1998.724032}, pages = {2040 -- 2044}, year = {1998}, abstract = {This paper addresses the pixel based classification of three dimensional objects from arbitrary views. To perform this task a coding strategy, inspired by the biological model of human vision, for pixel data is described. The coding strategy ensures that the input data is invariant against shift, scale and rotation of the object in the input domain. The image data is used as input to a class of self organizing neural networks, the Kohonen-maps or self-organizing feature maps (SOFM). To verify this approach two test sets have been generated: the first set, consisting of artificially generated images, is used to examine the classification properties of the SOFMs; the second test set examines the clustering capabilities of the SOFM when real world image data is applied to the network after it has been preprocessed to be invariant against shift, scale and rotation. It is shown that the clustering capability of the SOFM is strongly dependant on the invariance coding of the images.}, language = {en} } @inproceedings{ElsenKraissKrumbiegel1997, author = {Elsen, Ingo and Kraiss, Karl-Friedrich and Krumbiegel, Dirk}, title = {Pixel based 3D object recognition with bidirectional associative memories}, series = {International Conference on Neural Networks 1997}, booktitle = {International Conference on Neural Networks 1997}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4122-8}, pages = {1679 -- 1684}, year = {1997}, abstract = {This paper addresses the pixel based recognition of 3D objects with bidirectional associative memories. Computational power and memory requirements for this approach are identified and compared to the performance of current computer architectures by benchmarking different processors. It is shown, that the performance of special purpose hardware, like neurocomputers, is between one and two orders of magnitude higher than the performance of mainstream hardware. On the other hand, the calculation of small neural networks is performed more efficiently on mainstream processors. Based on these results a novel concept is developed, which is tailored for the efficient calculation of bidirectional associative memories. The computational efficiency is further enhanced by the application of algorithms and storage techniques which are matched to characteristics of the application at hand.}, language = {en} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @inproceedings{ElsenSchmalzbauer2011, author = {Elsen, Ingo and Schmalzbauer, Michael}, title = {Messsystematik zur Steuerung der Produkt- und Prozessqualit{\"a}t in Systemintegrationsprojekten - ein Erfahrungsbericht}, series = {Software Engineering 2011 - Fachtagung des GI-Fachbereichs Softwaretechnik, 21. - 25. Februar 2011 in Karlsruhe}, booktitle = {Software Engineering 2011 - Fachtagung des GI-Fachbereichs Softwaretechnik, 21. - 25. Februar 2011 in Karlsruhe}, editor = {Reussner, Ralf and Grund, Matthias and Andreas, Oberweis and Tichy, Walter}, publisher = {Gesellschaft f{\"u}r Informatik eV}, address = {Bonn}, isbn = {9783885792772}, issn = {1617-5468}, pages = {1 Seite}, year = {2011}, abstract = {Der Erfolg eines Softwarenentwicklungsprojektes insbesondere eines Systemintegrationsprojektes wird mit der Erf{\"u}llung des „Teufelsdreiecks", „In-Time", „In-Budget", „In-Quality" gemessen. Hierzu ist die Kenntnis der Software- und Prozessqualit{\"a}t essenziell, um die Einhaltung der Qualit{\"a}tskriterien festzustellen, aber auch, um eine Vorhersage hinsichtlich Termin- und Budgettreue zu treffen. Zu diesem Zweck wurde in der T-Systems Systems Integration ein System aus verschiedenen Key Performance Indikatoren entworfen und in der Organisation implementiert, das genau das leistet und die Kriterien f{\"u}r CMMI Level 3 erf{\"u}llt.}, language = {de} }