@inproceedings{ButenwegMarinkovićPaveseetal.2021, author = {Butenweg, Christoph and Marinković, Marko and Pavese, Alberto and Lanese, Igor and Hoffmeister, Benno and Pinkawa, Marius and Vulcu, Mihai-Cristian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and G{\"u}ndel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.}, title = {Seismic performance of multi-component systems in special risk industrial facilities}, series = {Proceedings of the seventeenth world conference on earthquake engineering}, booktitle = {Proceedings of the seventeenth world conference on earthquake engineering}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.}, language = {en} } @inproceedings{RosinKubalskiButenweg2014, author = {Rosin, Julia and Kubalski, Thomas and Butenweg, Christoph}, title = {Seismic Design of cylindrical liquid storage tanks}, series = {Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed.}, booktitle = {Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, organization = {International Conference on Seismic Design of Industrial Facilities <2013, Aachen>}, isbn = {978-3-658-02810-7 (E-Book) ; 978-3-658-02809-1 (Print)}, doi = {10.1007/978-3-658-02810-7_36}, pages = {429 -- 440}, year = {2014}, language = {en} } @inproceedings{AltayButenwegKlinkel2014, author = {Altay, Okyay and Butenweg, Christoph and Klinkel, Sven}, title = {Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper}, series = {6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain}, booktitle = {6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain}, year = {2014}, language = {en} } @inproceedings{ButenwegBursiNardinetal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Nardin, Chiara and Lanese, Igor and Pavese, Alberto and Marinković, Marko and Paolacci, Fabrizio and Quinci, Gianluca}, title = {Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities}, series = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, booktitle = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {9780791885352}, doi = {10.1115/PVP2021-61696}, pages = {8 Seiten}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed.}, language = {en} } @incollection{ButenwegGellert2009, author = {Butenweg, Christoph and Gellert, Christoph}, title = {Erdbebenberechnung von Mauerwerksbauten nach DIN EN 1998-1 (12.2010)}, series = {Mauerwerksbau-Praxis / Schubert; Schneider; Schoch (Hrsg.)}, booktitle = {Mauerwerksbau-Praxis / Schubert; Schneider; Schoch (Hrsg.)}, publisher = {Bauwerk}, address = {Berlin}, isbn = {978-3-89932-217-0}, pages = {299 -- 343}, year = {2009}, language = {de} } @incollection{ButenwegBollenbeck2003, author = {Butenweg, Christoph and Bollenbeck, S.}, title = {Mauerwerksbauten unter Erdbebenbelastung}, series = {Bauwerke und Erdbeben}, booktitle = {Bauwerke und Erdbeben}, publisher = {Vieweg}, address = {Wiesbaden}, isbn = {3-528-02574-3}, pages = {385 -- 397}, year = {2003}, language = {de} } @article{EdipSesovButenwegetal.2018, author = {Edip, K. and Sesov, V. and Butenweg, Christoph and Bojadjieva, J.}, title = {Development of coupled numerical model for simulation of multiphase soil}, series = {Computers and Geotechnics}, volume = {96}, journal = {Computers and Geotechnics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0266-352X}, doi = {10.1016/j.compgeo.2017.08.016}, pages = {118 -- 131}, year = {2018}, abstract = {In this paper, a coupled multiphase model considering both non-linearities of water retention curves and solid state modeling is proposed. The solid displacements and the pressures of both water and air phases are unknowns of the proposed model. The finite element method is used to solve the governing differential equations. The proposed method is demonstrated through simulation of seepage test and partially consolidation problem. Then, implementation of the model is done by using hypoplasticity for the solid phase and analyzing the fully saturated triaxial experiments. In integration of the constitutive law error controlling is improved and comparisons done accordingly. In this work, the advantages and limitations of the numerical model are discussed.}, language = {en} } @techreport{ButenwegDargelHoechstetal.2012, author = {Butenweg, Christoph and Dargel, H.-J. and H{\"o}chst, T. and Holtschoppen, B. and Schwarz, R. and Sippel, M.}, title = {Der Lastfall Erdbeben im Anlagenbau : Leitfaden : Entwurf, Bemessung und Konstruktion von Tragwerken und Komponenten in der chemischen Industrie in Anlehnung an die DIN EN 1998-1}, publisher = {Verband der Chemischen Industrie e.V.}, address = {Frankfurt}, pages = {20 S.}, year = {2012}, language = {de} } @inproceedings{AltayButenweg2013, author = {Altay, Okyay and Butenweg, Christoph}, title = {Ermittlung der optimalen Geometrie von Fl{\"u}ssigkeitss{\"a}ulend{\"a}mpfern auf Grundlage neuer Optimierungsans{\"a}tze}, series = {13. D-A-CH Tagung f{\"u}r Erdbebeningenieurwesen und Baudynamik (D-A-CH 2013) : 29.-30. August 2013, Wien, {\"O}sterreich}, booktitle = {13. D-A-CH Tagung f{\"u}r Erdbebeningenieurwesen und Baudynamik (D-A-CH 2013) : 29.-30. August 2013, Wien, {\"O}sterreich}, organization = {D-A-CH Tagung f{\"u}r Erdbebeningenieurwesen und Baudynamik <13, 2013, Wien>}, pages = {1 -- 10}, year = {2013}, language = {de} } @inproceedings{RajanKubalskiAltayetal.2017, author = {Rajan, Sreelakshmy and Kubalski, Thomas and Altay, Okyay and Dalguer, Luis A and Butenweg, Christoph}, title = {Multi-dimensional fragility analysis of a RC building with components using response surface method}, series = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, booktitle = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, publisher = {International Assn for Structural Mechanics in Reactor Technology (IASMiRT)}, address = {Raleigh, USA}, isbn = {9781510856776}, pages = {3126 -- 3135}, year = {2017}, abstract = {Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples.}, language = {en} }