@article{HelsperFissanThielen1983, author = {Helsper, Christoph and Fißan, H. J. and Thielen, H. J.}, title = {Determination of Particle Size Distributions by Means of an Electrostatic Classifier / Fißan, H. J.; Helsper, C. ; Thielen, H. J.}, series = {Journal of Aerosol Science. 14 (1983), H. 3}, journal = {Journal of Aerosol Science. 14 (1983), H. 3}, isbn = {0021-8502}, pages = {354 -- 357}, year = {1983}, language = {en} } @article{FoersterTillmannThust1996, author = {F{\"o}rster, Arnold and Tillmann, K. and Thust, M.}, title = {Determination of segregation, elastic strain and thin-foil relaxation in InxGa-1-x As islands on GaAs(001) by high resolution transmission electron microscopy / K. Tillmann ; A. Thust ; M. Lentzen ... A. F{\"o}rster ...}, series = {Philosophical magazine / Letters. 74 (1996), H. 5}, journal = {Philosophical magazine / Letters. 74 (1996), H. 5}, isbn = {1362-3036}, pages = {309 -- 315}, year = {1996}, language = {en} } @article{HelsperWiedensohlerWeiseetal.1986, author = {Helsper, Christoph and Wiedensohler, A. and Weise, W. and L{\"u}tkemeier, E.}, title = {Determination of the Bipolar Charge Equilibrium in Pure Gases / Wiedensohler, A. ; Weise, W. ; Helsper, C. ; L{\"u}tkemeier, E.}, series = {Aerosols : formation and reactivity ; proceedings of the second International Aerosol Conference, 22-26 Sept. 1986, Berlin (West) / Gesellschaft f{\"u}r Aerosolforschung (GAeF) ; American Association for Aerosol Research (AAAR)}, journal = {Aerosols : formation and reactivity ; proceedings of the second International Aerosol Conference, 22-26 Sept. 1986, Berlin (West) / Gesellschaft f{\"u}r Aerosolforschung (GAeF) ; American Association for Aerosol Research (AAAR)}, publisher = {Pergamon Press}, address = {Oxford [u.a.]}, pages = {383 -- 386}, year = {1986}, language = {en} } @article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} } @article{ArpshofenPoolSommeretal.1983, author = {Arpshofen, Ingo and Pool, M. J. and Sommer, Ferdinand and Gerling, Ulrich and Predel, Bruno and Schultheiss, Emil}, title = {Determination of the integral mixing enthalpies in the Cu-Pd-Si liquid ternary alloy system at 1600 K}, series = {Zeitschrift f{\"u}r Metallkunde : international journal of materials research and advanced techniques. Bd. 74, H. 1}, journal = {Zeitschrift f{\"u}r Metallkunde : international journal of materials research and advanced techniques. Bd. 74, H. 1}, issn = {0044-3093 ; 0179-4841}, pages = {25 -- 32}, year = {1983}, language = {en} } @inproceedings{CaminosSchmitzAttietal.2022, author = {Caminos, Ricardo Alexander Chico and Schmitz, Pascal and Atti, Vikrama and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @inproceedings{SurteesGillespieKernetal.2004, author = {Surtees, A. J. and Gillespie, A. and Kern, Alexander and Rousseau, A.}, title = {DEVELOPMENT OF A RISK ASSESSMENT CALCULATOR BASED ON A SIMPLIFIED FORM OF THE IEC 62305-2 STANDARD ON LIGHTNING PROTECTION}, year = {2004}, abstract = {Neue Blitzschutznorm IEC 62305. Entwicklung einer einfachen Software zur Risikoabw{\"a}gung}, language = {en} } @article{HoffschmidtFernandezKonstandopoulus2001, author = {Hoffschmidt, Bernhard and Fernandez, V. and Konstandopoulus, A. G.}, title = {Development of ceramic volumetric receiver technology}, series = {Forschungsbericht : DLR FB. 10 (2001)}, journal = {Forschungsbericht : DLR FB. 10 (2001)}, isbn = {0939-2963}, pages = {51 -- 61}, year = {2001}, language = {en} } @article{EdipSesovButenwegetal.2018, author = {Edip, K. and Sesov, V. and Butenweg, Christoph and Bojadjieva, J.}, title = {Development of coupled numerical model for simulation of multiphase soil}, series = {Computers and Geotechnics}, volume = {96}, journal = {Computers and Geotechnics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0266-352X}, doi = {10.1016/j.compgeo.2017.08.016}, pages = {118 -- 131}, year = {2018}, abstract = {In this paper, a coupled multiphase model considering both non-linearities of water retention curves and solid state modeling is proposed. The solid displacements and the pressures of both water and air phases are unknowns of the proposed model. The finite element method is used to solve the governing differential equations. The proposed method is demonstrated through simulation of seepage test and partially consolidation problem. Then, implementation of the model is done by using hypoplasticity for the solid phase and analyzing the fully saturated triaxial experiments. In integration of the constitutive law error controlling is improved and comparisons done accordingly. In this work, the advantages and limitations of the numerical model are discussed.}, language = {en} } @inproceedings{SattlerSchneiderAngeleetal.2022, author = {Sattler, Johannes Christoph and Schneider, Iesse Peer and Angele, Florian and Atti, Vikrama and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Development of heliostat field calibration methods: Theory and experimental test results}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.678}, pages = {9 Seiten}, year = {2022}, abstract = {In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut J{\"u}lich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy.}, language = {en} }