@inproceedings{SattlerSchneiderAngeleetal.2022, author = {Sattler, Johannes Christoph and Schneider, Iesse Peer and Angele, Florian and Atti, Vikrama and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Development of heliostat field calibration methods: Theory and experimental test results}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.678}, pages = {9 Seiten}, year = {2022}, abstract = {In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut J{\"u}lich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy.}, language = {en} } @inproceedings{SattlerAttiAlexopoulosetal.2022, author = {Sattler, Johannes Christoph and Atti, Vikrama and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Dutta, Siddharth and Kioutsioukis, Ioannis}, title = {DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.731}, pages = {9 Seiten}, year = {2022}, abstract = {This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut J{\"u}lich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 \% based on the tested days. The result fulfils SIJ's aim to achieve a reliability of around 70 \%, but SIJ aims to still improve the DNI forecast quality.}, language = {en} } @inproceedings{SchwagerAngeleNourietal.2022, author = {Schwager, Christian and Angele, Florian and Nouri, Bijan and Schwarzb{\"o}zl, Peter and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.675}, pages = {9 Seiten}, year = {2022}, abstract = {Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted.}, language = {en} } @inproceedings{SchulteSchwagerFrantzetal.2022, author = {Schulte, Jonas and Schwager, Christian and Frantz, Cathy and Schloms, Felix and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.693}, pages = {9 Seiten}, year = {2022}, abstract = {A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so.}, language = {en} } @article{SchwagerFleschSchwarzboezletal.2022, author = {Schwager, Christian and Flesch, Robert and Schwarzb{\"o}zl, Peter and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e}}, title = {Advanced two phase flow model for transient molten salt receiver system simulation}, series = {Solar Energy}, volume = {232}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X (print)}, doi = {10.1016/j.solener.2021.12.065}, pages = {362 -- 375}, year = {2022}, abstract = {In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed.}, language = {en} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Caminos, Ricardo Alexander Chico and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @inproceedings{MahdiDerschSchmitzetal.2022, author = {Mahdi, Zahra and Dersch, J{\"u}rgen and Schmitz, Pascal and Dieckmann, Simon and Caminos, Ricardo Alexander Chico and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Schwager, Christian and Schmitz, Mark and Gielen, Hans and Gedle, Yibekal and B{\"u}scher, Rauno}, title = {Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086269}, pages = {11 Seiten}, year = {2022}, abstract = {The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP).}, language = {en} } @article{MaurerRiekeSchemmetal.2023, author = {Maurer, Florian and Rieke, Christian and Schemm, Ralf and Stollenwerk, Dominik}, title = {Analysis of an urban grid with high photovoltaic and e-mobility penetration}, series = {Energies}, volume = {16}, journal = {Energies}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16083380}, pages = {18 Seiten}, year = {2023}, abstract = {This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility "Mobilit{\"a}t in Deutschland", which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30\% which reduces the average price of a charged kWh by 35\% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub.}, language = {en} } @article{ŠakićMarinkovićButenwegetal.2023, author = {Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph and Klinkel, Sven}, title = {Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls}, series = {Engineering Structures}, volume = {276}, journal = {Engineering Structures}, editor = {Yang, J.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.115342}, year = {2023}, abstract = {Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study.}, language = {en} } @incollection{StollenwerkFranzkeMaureretal.2023, author = {Stollenwerk, Dominik and Franzke, Till and Maurer, Florian and Reinkensmeier, Sebastian and Kim, Franken and Tambornino, Philipp and Haas, Florian and Rieke, Christian and Hermanuz, Andreas and Borchert, J{\"o}rg and Ritz, Thomas and Sander, Volker}, title = {Smarte Lades{\"a}ulen : Netz- und Marktdienliches {\"o}ffentliches Laden}, series = {Towards the New Normal in Mobility : Technische und betriebswirtschaftliche Aspekte}, booktitle = {Towards the New Normal in Mobility : Technische und betriebswirtschaftliche Aspekte}, editor = {Proff, Heike}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-39437-0 (Print)}, doi = {10.1007/978-3-658-39438-7_18}, pages = {287 -- 304}, year = {2023}, abstract = {Stand 01.01.2022 sind in Deutschland 618.460 elektrisch angetriebene KFZ zugelassen. Insgesamt sind derzeit 48.540.878 KFZ zugelassen, was einer Elektromobilit{\"a}tsquote von ca. 1,2 \% entspricht. Derzeit werden Elektromobile {\"u}ber Ladestationen oder Steckdosen mit dem Stromnetz verbunden und {\"u}blicherweise mit der vollen Ladekapazit{\"a}t des Anschlusses aufgeladen, bis das Batteriemanagementsystem des Fahrzeugs abh{\"a}ngig vom Ladezustand der Batterie die Ladeleistung reduziert.}, language = {de} }