@inproceedings{MarinkovicButenweg2020, author = {Marinkovic, Marko and Butenweg, Christoph}, title = {Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays}, series = {Brick and Block Masonry - From Historical to Sustainable Masonry. Proceedings of the 17th International Brick/Block Masonry Conference}, booktitle = {Brick and Block Masonry - From Historical to Sustainable Masonry. Proceedings of the 17th International Brick/Block Masonry Conference}, publisher = {CRC Press}, address = {London}, doi = {10.1201/9781003098508-72}, pages = {1 -- 7}, year = {2020}, abstract = {Reinforced concrete (RC) structures with masonry infills are widely used for several types of buildings all over the world. However, it is well known that traditional masonry infills constructed with rigid contact to the surrounding RC frame performed rather poor in past earthquakes. Masonry infills showed severe in-plane damages and failed in many cases under out-of-plane seismic loading. As the undesired interactions between frames and infills changes the load transfer on building level, complete collapses of buildings were observed. A possible solution is uncoupling of masonry infills to the frame to reduce the infill contribution activated by the frame deformation under horizontal loading. The paper presents numerical simulations on RC frames equipped with the innovative decoupling system INODIS. The system was developed within the European project INSYSME and allows an effective uncoupling of frame and infill. The simulations are carried out with a micro-modelling approach, which is able to predict the complex nonlinear behaviour resulting from the different materials and their interaction. Each brick is modelled individually and connected taking into account nonlinearity of a brick mortar interface. The calibration of the model is based on small specimen tests and experimental results for one bay one storey frame are used for the validation. The validated model is further used for parametric studies on two storey and two bay infilled frames. The response and change of the structural stiffness are analysed and compared to the traditionally infilled frame. The results confirm the effectiveness of the INODIS system with less damage and relatively low contribution of the infill at high drift levels. In contrast to the uncoupled system configurations, traditionally infilled frames experienced brittle failure at rather low drift levels.}, language = {en} } @inproceedings{MichelRosinButenwegetal.2020, author = {Michel, Philipp and Rosin, Julia and Butenweg, Christoph and Klinkel, Sven}, title = {Soil-dependent earthquake spectra in the analysis of liquid-storage-tanks on compliant soil}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {245 -- 254}, year = {2020}, abstract = {A further development of the Added-Mass-Method allows the combined representation of the effects of both soil-structure-interaction and fluid-structure interaction on a liquid-filled-tank in one model. This results in a practical method for describing the dynamic fluid pressure on the tank shell during joint movement. The fluid pressure is calculated on the basis of the tank's eigenform and the earthquake acceleration and represented by additional masses on the shell. The bearing on compliant ground is represented by replacement springs, which are calculated dependent on the local soil composition. The influence of the shear modulus of the compliant soil is clearly visible in the pressure curves and the stress distribution in the shell. The acceleration spectra are also dependent on soil stiffness. According to Eurocode-8 the acceleration spectra are determined for fixed soil-classes, instead of calculating the accelerations for each site in direct dependence on the soil composition. This leads to unrealistic sudden changes in the system's response. Therefore, earthquake spectra are calculated for different soil models in direct dependence of the shear modulus. Thus, both the acceleration spectra and the replacement springs match the soil composition. This enables a reasonable and consistent calculation of the system response for the actual conditions at each site.}, language = {en} } @inproceedings{MarkinkovicButenwegPaveseetal.2020, author = {Markinkovic, Marko and Butenweg, Christoph and Pavese, A. and Lanese, I. and Hoffmeister, B. and Pinkawa, M. and Vulcu, C. and Bursi, O. and Nardin, C. and Paolacci, F. and Quinci, G. and Fragiadakis, M. and Weber, F. and Huber, P. and Renault, P. and G{\"u}ndel, M. and Dyke, S. and Ciucci, M. and Marino, A.}, title = {Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {159 -- 172}, year = {2020}, language = {en} } @inproceedings{CacciatoreButenweg2020, author = {Cacciatore, Pamela and Butenweg, Christoph}, title = {Seismic safety of cylindrical granular material steel silos under seismic loading}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {231 -- 244}, year = {2020}, language = {en} } @inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} } @inproceedings{AnicPenavaGuljasetal.2018, author = {Anic, Filip and Penava, Davorin and Guljas, Ivica and Sarhosis, Vasilis and Abrahamczyk, Lars and Butenweg, Christoph}, title = {The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 11}, year = {2018}, language = {en} } @inproceedings{ButenwegRajan2014, author = {Butenweg, Christoph and Rajan, Sreelakshmy}, title = {Design and construction techniques of AAC masonry buildings in earthquakes regions}, series = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, booktitle = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, year = {2014}, language = {en} } @inproceedings{Butenweg2021, author = {Butenweg, Christoph}, title = {Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies}, series = {Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions}, booktitle = {Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions}, editor = {Kuzmanović, Vladan and Ignjatović, Ivan}, publisher = {University of Belgrade}, address = {Belgrade}, pages = {67 -- 75}, year = {2021}, abstract = {Nowadays modern high-performance buildings and facilities are equipped with monitoring systems and sensors to control building characteristics like energy consumption, temperature pattern and structural safety. The visualization and interpretation of sensor data is typically based on simple spreadsheets and non-standardized user-oriented solutions, which makes it difficult for building owners, facility managers and decision-makers to evaluate and understand the data. The solution of this problem in the future are integrated BIM-Sensor approaches which allow the generation of BIM models incorporating all relevant information of monitoring systems. These approaches support both the dynamic visualization of key structural performance parameters, the effective long-term management of sensor data based on BIM and provide a user-friendly interface to communicate with various stakeholders. A major benefit for the end user is the use of the BIM software architecture, which is the future standard anyway. In the following, the application of the integrated BIM-Sensor approach is illustrated for a typical industrial facility as a part of an early warning and rapid response system for earthquake events currently developed in the research project "ROBUST" with financial support by the German Federal Ministry for Economic Affairs and Energy (BMWI).}, language = {en} } @inproceedings{LuBeyerBosiljkovetal.2016, author = {Lu, S. and Beyer, K. and Bosiljkov, V. and Butenweg, Christoph and D'Ayala, D. and Degee, H. and Gams, M. and Klouda, J. and Lagomarsino, S. and Penna, A. and Mojsilovic, N. and da Porto, F. and Sorrentino, L. and Vintzileou, E.}, title = {Next generation of Eurocode 8, masonry chapter}, series = {Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016}, booktitle = {Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016}, editor = {Modena, Claudio and da Porto, F. and Valluzzi, M.R.}, publisher = {Taylor \& Francis}, address = {London}, isbn = {978-1-138-02999-6 (Print)}, pages = {695 -- 700}, year = {2016}, abstract = {This paper describes the procedure on the evaluation of the masonry chapter for the next generation of Eurocode 8, the European Standard for earthquake-resistant design. In CEN, TC 250/SC8, working group WG 1 has been established to support the subcommittee on the topic of masonry on both design of new structures (EN1998-1) and assessment of existing structures (EN1998-3). The aim is to elaborate suggestions for amendments which fit the current state of the art in masonry and earthquake-resistant design. Focus will be on modelling, simplified methods, linear-analysis (q-values, overstrength-values), nonlinear procedures, out-of-plane design as well as on clearer definition of limit states. Beside these, topics related to general material properties, reinforced masonry, confined masonry, mixed structures and non-structural infills will be covered too. This paper presents the preliminary work and results up to the submission date.}, language = {en} } @inproceedings{RensFerreinPoel2008, author = {Rens, Gavin and Ferrein, Alexander and Poel, Etienne van der}, title = {Extending DTGolog to deal with POMD-Ps}, series = {Proceedings of the Nineteenth Annual Symposium of the Pattern Recognition Association of South Africa (PRASA 2008)}, booktitle = {Proceedings of the Nineteenth Annual Symposium of the Pattern Recognition Association of South Africa (PRASA 2008)}, organization = {Pattern Recognition Association of South Africa}, pages = {49 -- 54}, year = {2008}, language = {en} }