@article{SousaSiqueiraVerciketal.2017, author = {Sousa, Marcos A. M. and Siqueira, Jose R. Jr. and Vercik, Andres and Sch{\"o}ning, Michael Josef and Oliveira, Osvaldo N. Jr.}, title = {Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors}, series = {IEEE Sensors Journal}, volume = {17}, journal = {IEEE Sensors Journal}, number = {6}, publisher = {IEEE}, address = {New York}, issn = {1558-1748}, doi = {10.1109/JSEN.2017.2653238}, pages = {1735 -- 1740}, year = {2017}, abstract = {The capacitive electrolyte-insulator-semiconductor (EIS) structure is a typical device based on a field-effect sensor platform. With a simple silicon-based structure, EIS have been useful for several sensing applications, especially with incorporation of nanostructured films to modulate the ionic transport and the flat-band potential. In this paper, we report on ion transport and changes in flat-band potential in EIS sensors made with layer-by-layer films containing poly(amidoamine) (PAMAM) dendrimer and single-walled carbon nanotubes (SWNTs) adsorbed on p-Si/SiO 2 /Ta 2 O 5 chips with an Al ohmic contact. The impedance spectra were fitted using an equivalent circuit model, from which we could determine parameters such as the double-layer capacitance. This capacitance decreased with the number of bilayers owing to space charge accumulated at the electrolyte-insulator interface, up to three PAMAM/SWNTs bilayers, after which it stabilized. The charge-transfer resistance was also minimum for three bilayers, thus indicating that this is the ideal architecture for an optimized EIS performance. The understanding of the influence of nanostructures and the fine control of operation parameters pave the way for optimizing the design and performance of new EIS sensors.}, language = {en} } @article{YoshinobuMiyamotoWerneretal.2017, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species}, series = {Annual Review of Analytical Chemistry}, volume = {10}, journal = {Annual Review of Analytical Chemistry}, publisher = {Annual Reviews}, address = {Palo Alto, Calif.}, issn = {1936-1327}, doi = {10.1146/annurev-anchem-061516-045158}, pages = {225 -- 246}, year = {2017}, abstract = {A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.}, language = {en} } @article{MichaelMayerWeberetal.2017, author = {Michael, Hackl and Mayer, Katharina and Weber, Mareike and Staat, Manfred and van Riet, Roger and Burkhart, Klau Josef and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Plate osteosynthesis of proximal ulna fractures : a biomechanical micromotion analysis}, series = {The journal of hand surgery}, volume = {42}, journal = {The journal of hand surgery}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2017.05.014}, pages = {834.e1 -- 834.e7}, year = {2017}, language = {en} } @inproceedings{AbelPerezVianaCiritsisetal.2017, author = {Abel, Alexander and P{\´e}rez-Viana, Daniel and Ciritsis, Bernard and Staat, Manfred}, title = {Prevention of femur neck fractures through femoroplasty}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {114 -- 115}, year = {2017}, language = {en} } @article{ArreolaOberlaenderMaetzkowetal.2017, author = {Arreola, Julio and Oberl{\"a}nder, Jan and M{\"a}tzkow, M. and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Surface functionalization for spore-based biosensors with organosilanes}, series = {Electrochimica Acta}, volume = {241}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.04.157}, pages = {237 -- 243}, year = {2017}, abstract = {In the present work, surface functionalization of different sensor materials was studied. Organosilanes are well known to serve as coupling agent for biomolecules or cells on inorganic materials. 3-aminopropyltriethoxysilane (APTES) was used to attach microbiological spores time to an interdigitated sensor surface. The functionality and physical properties of APTES were studied on isolated sensor materials, namely silicon dioxide (SiO2) and platinum (Pt) as well as the combined material on sensor level. A predominant immobilization of spores could be demonstrated on SiO2 surfaces. Additionally, the impedance signal of APTES-functionalized biosensor chips has been investigated.}, language = {en} } @article{BronderPoghossianKeusgenetal.2017, author = {Bronder, Thomas and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors}, series = {tm - Technisches Messen}, volume = {84}, journal = {tm - Technisches Messen}, number = {10}, publisher = {De Gruyter}, address = {Oldenbourg}, doi = {10.1515/teme-2017-0015}, pages = {628 -- 634}, year = {2017}, abstract = {In this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA)molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto theSiO2-chip surface.EIS sensors can be utilized as a tool to detect surface-charge changes; the electrostatic adsorption of oligonucleotides onto the polyelectrolyte layer leads to a measureable surface-potential change. Signals of 39mV have been recorded after the incubation with the oligonucleotide solution. Besides the electrochemical experiments, the successful adsorption of dsDNA onto the polyelectrolyte layer has been verified via fluorescence microscopy. The presented results demonstrate that the signal recording of EISchips, which are modified with a polyelectrolyte layer, canbe used as a favorable approach for a fast, cheap and simple detection method for dsDNA.}, language = {en} } @inproceedings{BirgelLeschingerWegmannetal.2017, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in shoulder area via an OpenSim based computer calculation}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {116 -- 117}, year = {2017}, language = {en} } @inproceedings{JabbariBhattaraiAndingetal.2017, author = {Jabbari, Medisa and Bhattarai, Aroj and Anding, Ralf and Staat, Manfred}, title = {Biomechanical simulation of different prosthetic meshes for repairing uterine/vaginal vault prolapse}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {118 -- 119}, year = {2017}, language = {en} } @inproceedings{SuryoputriGhaderiLinderetal.2017, author = {Suryoputri, Nathania and Ghaderi, Aydin and Linder, Peter and Kotliar, Konstantin and G{\"o}ttler, Jens and Sorg, Christian and Grimmer, Timo}, title = {Does hemodynamic response function change in Alzheimer disease?}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {92}, year = {2017}, language = {en} } @inproceedings{SchneiderAlHakimKayseretal.2017, author = {Schneider, Oliver and Al Hakim, Taher and Kayser, Peter and Digel, Ilya}, title = {Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {96 -- 97}, year = {2017}, language = {en} }