@inproceedings{MaurerMiskiwAcostaetal.2023, author = {Maurer, Florian and Miskiw, Kim K. and Acosta, Rebeca Ramirez and Harder, Nick and Sander, Volker and Lehnhoff, Sebastian}, title = {Market abstraction of energy markets and policies - application in an agent-based modeling toolbox}, series = {EI.A 2023: Energy Informatics}, booktitle = {EI.A 2023: Energy Informatics}, editor = {Jorgensen, Bo Norregaard and Pereira da Silva, Luiz Carlos and Ma, Zheng}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-48651-7 (Print)}, doi = {10.1007/978-3-031-48652-4_10}, pages = {139 -- 157}, year = {2023}, abstract = {In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework.}, language = {en} } @inproceedings{MaurerNitschKochemsetal.2024, author = {Maurer, Florian and Nitsch, Felix and Kochems, Johannes and Schimeczek, Christoph and Sander, Volker and Lehnhoff, Sebastian}, title = {Know your tools - a comparison of two open agent-based energy market models}, series = {2024 20th International Conference on the European Energy Market (EEM)}, booktitle = {2024 20th International Conference on the European Energy Market (EEM)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/EEM60825.2024.10609021}, pages = {8 Seiten}, year = {2024}, abstract = {Due to the transition to renewable energies, electricity markets need to be made fit for purpose. To enable the comparison of different energy market designs, modeling tools covering market actors and their heterogeneous behavior are needed. Agent-based models are ideally suited for this task. Such models can be used to simulate and analyze changes to market design or market mechanisms and their impact on market dynamics. In this paper, we conduct an evaluation and comparison of two actively developed open-source energy market simulation models. The two models, namely AMIRIS and ASSUME, are both designed to simulate future energy markets using an agent-based approach. The assessment encompasses modelling features and techniques, model performance, as well as a comparison of model results, which can serve as a blueprint for future comparative studies of simulation models. The main comparison dataset includes data of Germany in 2019 and simulates the Day-Ahead market and participating actors as individual agents. Both models are comparable close to the benchmark dataset with a MAE between 5.6 and 6.4 €/MWh while also modeling the actual dispatch realistically.}, language = {en} } @inproceedings{MaurerSejdijaSander2024, author = {Maurer, Florian and Sejdija, Jonathan and Sander, Volker}, title = {Decentralized energy data storages through an Open Energy Database Server}, doi = {10.5281/zenodo.10607895}, pages = {5 Seiten}, year = {2024}, abstract = {In the research domain of energy informatics, the importance of open datais rising rapidly. This can be seen as various new public datasets are created andpublished. Unfortunately, in many cases, the data is not available under a permissivelicense corresponding to the FAIR principles, often lacking accessibility or reusability.Furthermore, the source format often differs from the desired data format or does notmeet the demands to be queried in an efficient way. To solve this on a small scale atoolbox for ETL-processes is provided to create a local energy data server with openaccess data from different valuable sources in a structured format. So while the sourcesitself do not fully comply with the FAIR principles, the provided unique toolbox allows foran efficient processing of the data as if the FAIR principles would be met. The energydata server currently includes information of power systems, weather data, networkfrequency data, European energy and gas data for demand and generation and more.However, a solution to the core problem - missing alignment to the FAIR principles - isstill needed for the National Research Data Infrastructure.}, language = {en} } @article{RieplPettrakFaulstichetal.2010, author = {Riepl, Herbert Matthias and Pettrak, J{\"u}rgen and Faulstich, Martin and Herrmann, Wolfgang Anton}, title = {Self metathesis of fatty alcohols and amines to provide monomers for polyester and polyamide products}, series = {Macromolecular Symposia}, volume = {293}, journal = {Macromolecular Symposia}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3900 (eISSN)}, doi = {10.1002/masy.200900041}, pages = {39 -- 42}, year = {2010}, abstract = {Self metathesis of oleochemicals offers a variety of bifunctional compounds, that can be used as monomer for polymer production. Many precursors are in huge scales available, like oleic acid ester (biodiesel), oleyl alcohol (tensides), oleyl amines (tensides, lubricants). We show several ways to produce and separate and purify C18-α,ω-bifunctional compounds, using Grubbs 2nd Generation catalysts, starting from technical grade educts.}, language = {en} } @article{UysalFiratCreutzetal.2022, author = {Uysal, Karya and Firat, Ipek Serat and Creutz, Till and Aydin, Inci Cansu and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes}, series = {membranes}, volume = {2023}, journal = {membranes}, number = {13(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/membranes13010022}, pages = {Artikel 22}, year = {2022}, abstract = {Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5\% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.}, language = {en} } @book{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, Michael}, title = {Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, pages = {2, xiii, 282 Seiten}, year = {2003}, language = {en} } @article{BayerTemizArtmannDigeletal.2020, author = {Bayer, Robin and Temiz Artmann, Ayseg{\"u}l and Digel, Ilya and Falkenstein, Julia and Artmann, Gerhard and Creutz, Till and Hescheler, J{\"u}rgen}, title = {Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model}, series = {Cellular Physiology and Biochemistry}, volume = {54}, journal = {Cellular Physiology and Biochemistry}, publisher = {Cell Physiol Biochem Press}, address = {D{\"u}sseldorf}, issn = {1421-9778}, doi = {10.33594/000000225}, pages = {371 -- 383}, year = {2020}, abstract = {Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6\% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5\% and 50nM verapamil by 2,8\%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis.}, language = {en} } @article{HasanKeilStaatetal.2012, author = {Hasan, Istabrak and Keil, Ludger and Staat, Manfred and Wahl, Gerhard and Bourauel, Christoph}, title = {Determination of the frictional coefficient of the implant-antler interface : experimental approach}, series = {Biomedical Engineering / Biomedizinische Technik}, volume = {57}, journal = {Biomedical Engineering / Biomedizinische Technik}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {1862-278X}, pages = {359 -- 363}, year = {2012}, abstract = {The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.}, language = {en} } @article{BassamHeschelerTemizArtmannetal.2012, author = {Bassam, Rasha and Hescheler, J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Digel, Ilya}, title = {Effects of spermine NONOate and ATP on the thermal stability of hemoglobin}, series = {BMC Biophysics}, volume = {5}, journal = {BMC Biophysics}, publisher = {BioMed Central}, address = {London}, issn = {2046-1682}, doi = {10.1186/2046-1682-5-16}, year = {2012}, abstract = {Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell.}, language = {en} } @article{Grotendorst2012, author = {Grotendorst, Johannes}, title = {IAS Winter School: Hierarchical Methods for Dynamics in Complex Molecular Systems}, series = {Innovatives Supercomputing in Deutschland : inSiDE}, volume = {10}, journal = {Innovatives Supercomputing in Deutschland : inSiDE}, pages = {104 -- 1}, year = {2012}, language = {en} }