@inproceedings{AbelPerezVianaCiritsisetal.2017, author = {Abel, Alexander and P{\´e}rez-Viana, Daniel and Ciritsis, Bernard and Staat, Manfred}, title = {Prevention of femur neck fractures through femoroplasty}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {114 -- 115}, year = {2017}, language = {en} } @inproceedings{AbelBoninAlbrachtetal.2010, author = {Abel, Thomas and Bonin, Dominik and Albracht, Kirsten and Zeller, Sebastian and Br{\"u}ggemann, Gert-Peter and Burkett, Brendan and Str{\"u}der, Heiko K.}, title = {Kinematic profile of the elite handcyclist}, series = {28th International Conference on Biomechanics in Sports, Marquette, Michigan, USA, July 19 - 23, 2010}, booktitle = {28th International Conference on Biomechanics in Sports, Marquette, Michigan, USA, July 19 - 23, 2010}, issn = {1999-4168}, pages = {140 -- 141}, year = {2010}, language = {en} } @inproceedings{AzarDigel2019, author = {Azar, Fouad and Digel, Ilya}, title = {Utilization of fluorescence spectroscopy and neural networks in clinical analysis}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {40 -- 41}, year = {2019}, abstract = {Fluorescence topography of human urine in combination with learning algorithms can provide a variant pattern recognition method in analytical clinical chemistry and, eventually, diagnosis.}, language = {en} } @inproceedings{BayerHeschelerArtmannetal.2019, author = {Bayer, Robin and Hescheler, J{\"u}rgen and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Treating arterial hypertension in a cell culture well}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {5 -- 6}, year = {2019}, abstract = {Hypertension describes the pathological increase of blood pressure, which is most commonly associated with the increase of vascular wall stiffness [1]. Referring to the "Deutsche Bluthochdruck Liga" this pathology shows a growing trend in our aging society. In order to find novel pharmacological and probably personalized treatments, we want to present a functional approach to study biomechanical properties of a human aortic vascular model. In this method review we will give an overview of recent studies which were carried out with the CellDrum technology [2] and underline the added value to already existing standard procedures known from the field of physiology. Herein described CellDrum technology is a system to measure functional mechanical properties of cell monolayers and thin tissue constructs in-vitro. Additionally, the CellDrum enables to elucidate the mechanical response of cells to pharmacological drugs, toxins and vasoactive agents. Due to its highly flexible polymer support, cells can also be mechanically stimulated by steady and cyclic biaxial stretching.}, language = {en} } @inproceedings{BegingPoghossianMlyneketal.2010, author = {Beging, Stefan and Poghossian, Arshak and Mlynek, D. and Hataihimakul, S. and Pedraza, A. and Dhawan, S. and Laube, N. and Kleinen, L. and Baldsiefen, G. and Busch, H. and Sch{\"o}ning, Michael Josef}, title = {Ion-selective sensors for the determination of the risk of urinary stone formation}, series = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, booktitle = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, address = {Warsaw}, pages = {74 -- 80}, year = {2010}, language = {en} } @inproceedings{BehbahaniRibleMoulinecetal.2015, author = {Behbahani, Mehdi and Rible, Sebastian and Moulinec, Charles and Fournier, Yvan and Nicolai, Mike and Crosetto, Paolo}, title = {Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing}, series = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, volume = {9}, booktitle = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, number = {5}, year = {2015}, language = {en} } @inproceedings{BhattaraiFrotscherStaat2015, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Biomechanical study of the female pelvic floor dysfunction using the finite element method}, series = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, booktitle = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, publisher = {RWTH Aachen University}, address = {Aachen}, organization = {ECCOMAS Young Investigators Conference <3, 2015, Aachen>}, pages = {1 -- 4}, year = {2015}, language = {en} } @inproceedings{BhattaraiFrotscherStaat2016, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Significance of fibre geometry on passive-active response of pelvic muscles to evaluate pelvic dysfunction}, series = {BioMedWomen: Proceedings of the international conference on clinical and bioengineering for women's health}, booktitle = {BioMedWomen: Proceedings of the international conference on clinical and bioengineering for women's health}, editor = {Natal Jorge, Renato}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {978-1-138-02910-1}, pages = {185 -- 188}, year = {2016}, language = {en} } @inproceedings{BhattaraiStaat2016, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Female pelvic floor dysfunction: progress weakening of the support system}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {11 -- 12}, year = {2016}, abstract = {The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders.}, language = {en} } @inproceedings{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Pectopexy to repair vaginal vault prolapse: a finite element approach}, series = {Proceedings CMBBE 2018}, booktitle = {Proceedings CMBBE 2018}, editor = {Fernandes, P.R. and Tavares, J. M.}, year = {2018}, abstract = {The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient's anatomy and the surgeon's preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes.}, language = {en} }