@article{DiktaReisselHarlass2016, author = {Dikta, Gerhard and Reißel, Martin and Harlaß, Carsten}, title = {Semi-parametric survival function estimators deduced from an identifying Volterra type integral equation}, series = {Journal of multivariate analysis}, journal = {Journal of multivariate analysis}, number = {147}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.jmva.2016.02.008}, pages = {273 -- 284}, year = {2016}, abstract = {Based on an identifying Volterra type integral equation for randomly right censored observations from a lifetime distribution function F, we solve the corresponding estimating equation by an explicit and implicit Euler scheme. While the first approach results in some known estimators, the second one produces new semi-parametric and pre-smoothed Kaplan-Meier estimators which are real distribution functions rather than sub-distribution functions as the former ones are. This property of the new estimators is particular useful if one wants to estimate the expected lifetime restricted to the support of the observation time. Specifically, we focus on estimation under the semi-parametric random censorship model (SRCM), that is, a random censorship model where the conditional expectation of the censoring indicator given the observation belongs to a parametric family. We show that some estimated linear functionals which are based on the new semi-parametric estimator are strong consistent, asymptotically normal, and efficient under SRCM. In a small simulation study, the performance of the new estimator is illustrated under moderate sample sizes. Finally, we apply the new estimator to a well-known real dataset.}, language = {en} } @article{HafnerDemetzWeickertetal.2014, author = {Hafner, David and Demetz, Oliver and Weickert, Joachim and Reißel, Martin}, title = {Mathematical Foundations and Generalisations of the Census Transform for Robust Optic Flow Computation}, series = {Journal of Mathematical Imaging and Vision}, journal = {Journal of Mathematical Imaging and Vision}, publisher = {Springer}, address = {New York}, issn = {1573-7683 (Online)}, doi = {10.1007/s10851-014-0529-9}, year = {2014}, language = {en} } @inproceedings{HafnerOchsWeickertetal.2016, author = {Hafner, David and Ochs, Peter and Weickert, Joachim and Reißel, Martin}, title = {FSI Schemes : Fast Semi-Iterative Solvers for PDEs and Optimisation Methods}, series = {Pattern Recognition : 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings}, booktitle = {Pattern Recognition : 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings}, editor = {Rosenhahn, Bodo}, publisher = {Springer}, isbn = {978-3-319-45886-1}, doi = {10.1007/978-3-319-45886-1_8}, pages = {91 -- 102}, year = {2016}, language = {de} } @article{HirschfeldLustfeldReisseletal.2010, author = {Hirschfeld, J. A. and Lustfeld, H. and Reißel, Martin and Steffen, B.}, title = {A novel scheme for precise diagnostics and effective stabilization of currents in a fuel cell stack}, series = {International Journal of Energy Research. 34 (2010), H. 3}, journal = {International Journal of Energy Research. 34 (2010), H. 3}, isbn = {0363-907X}, pages = {293 -- 301}, year = {2010}, language = {en} } @article{HirschfeldLustfeldReisseletal.2010, author = {Hirschfeld, J. A. and Lustfeld, H. and Reißel, Martin and Steffen, B.}, title = {Tomographic diagnostics of current distributions in a fuel cell stack}, series = {International Journal of Energy Research}, volume = {34}, journal = {International Journal of Energy Research}, number = {3}, isbn = {0363-907X}, pages = {284 -- 292}, year = {2010}, language = {en} } @article{KleefeldReissel2011, author = {Kleefeld, A. and Reißel, Martin}, title = {The Levenberg-Marquardt method applied to a parameter estimation problem arising from electrical resistivity tomography}, series = {Applied Mathematics and Computation}, volume = {217}, journal = {Applied Mathematics and Computation}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0096-3003}, pages = {4490 -- 4501}, year = {2011}, language = {en} } @article{LustfeldHirschfeldReisseletal.2011, author = {Lustfeld, H. and Hirschfeld, J. A. and Reißel, Martin and Steffen, B.}, title = {Enhancement of precision and reduction of measuring points in tomographic reconstructions}, series = {Physics Letters A}, volume = {375}, journal = {Physics Letters A}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, pages = {1167 -- 1171}, year = {2011}, language = {en} } @article{LustfeldPithanReissel2012, author = {Lustfeld, H. and Pithan, C. and Reißel, Martin}, title = {Metallic electrolyte composites in the framework of the brick-layer model}, series = {Journal of the European Ceramic Society}, volume = {32}, journal = {Journal of the European Ceramic Society}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2011.10.017}, pages = {859 -- 864}, year = {2012}, abstract = {It is well known that the already large dielectric constants of some electrolytes like BaTiO₃ can be enhanced further by adding metallic (e.g. Ni, Cu or Ag) nanoparticles. The enhancement can be quite large, a factor of more than 1000 is possible. The consequences for the properties will be discussed in the present paper applying a brick-layer model (BLM) for calculating dc-resistivities of thin layers and a modified one (PBLM) that includes percolation for calculating dielectric properties of these materials. The PBLM results in an at least qualitative description and understanding of the physical phenomena: This model gives an explanation for the steep increase of the dielectric constant below the percolation threshold and why this increase is connected to a dramatic decrease of the breakdown voltage as well as the ability of storing electrical energy. We conclude that metallic electrolyte composites like BaTiO₃ are not appropriate for energy storage.}, language = {en} } @article{MuellerHirschfeldLambertzetal.2014, author = {M{\"u}ller, Martin and Hirschfeld, Julian and Lambertz, Rita and Schulze Lohoff, Andreas and Lustfeld, Hans and Pfeifer, Heinz and Reißel, Martin}, title = {Validation of a novel method for detecting and stabilizing malfunctioning areas in fuel cell stacks}, series = {Journal of power sources}, volume = {272}, journal = {Journal of power sources}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2755 (E-Journal); 0378-7753 (Print)}, doi = {10.1016/j.jpowsour.2014.08.045}, pages = {225 -- 232}, year = {2014}, abstract = {In this paper a setup for detecting malfunctioning areas of MEAs in fuel cell stacks is described. Malfunctioning areas generate electric cross currents inside bipolar plates. To exploit this we suggest bipolar plates consisting not of two but of three layers. The third one is a highly conducting layer and segmented such that the cross currents move along the segments to the surface of the stack where they can be measured by an inductive sensor. With this information a realistic model can be used to detect the malfunctioning area. Furthermore the third layer will prevent any current inhomogeneity of a malfunctioning cell to spread to neighbouring cells in the stack. In this work the results of measurements in a realistic cell setup will be compared with the results obtained in simulation studies with the same configuration. The basis for the comparison is the reliable characterisation of the electrical properties of the cell components and the implication of these results into the simulation model. The experimental studies will also show the limits in the maximum number of segments, which can be used for a reliable detection of cross currents.}, language = {en} } @article{Reissel1993, author = {Reißel, Martin}, title = {Numerische Berechnung elektromagnetischer Felder in Turbogeneratoren}, series = {ZAMM - Zeitschrift f{\"u}r Angewandte Mathematik und Mechanik. 73 (1993), H. 7/8}, journal = {ZAMM - Zeitschrift f{\"u}r Angewandte Mathematik und Mechanik. 73 (1993), H. 7/8}, isbn = {0044-2267}, pages = {T677 -- T680}, year = {1993}, language = {de} }