@inproceedings{StaatSzelinskiHeitzer2001, author = {Staat, Manfred and Szelinski, E. and Heitzer, Michael}, title = {Kollapsanalyse von l{\"a}ngsfehlerbehafteten Rohren und Beh{\"a}ltern}, year = {2001}, abstract = {Es werden verbesserte Kollapsanalysen von dickwandigen, mit axialen Oberfl{\"a}chenfehlern behafteten Rohren und Beh{\"a}ltern vorgeschlagen.}, subject = {Druckbeh{\"a}lter}, language = {de} } @inproceedings{StaatHeitzerReindersetal.2001, author = {Staat, Manfred and Heitzer, Michael and Reinders, H. and Schubert, F.}, title = {Einspielen und Ratchetting bei Zug- und Torsionsbelastung: Analyse und Experimente}, year = {2001}, abstract = {Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der klassischen Plastizit{\"a}tstheorie, die neben ausreichender Verformbarkeit keine einschr{\"a}nkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle f{\"u}r Details der Lastgeschichte und des Stoffverhaltens. Eine FEM-basierte Traglast- und Einspielanalyse f{\"u}r ideal plastisches Material wurde auf ein kinematisch verfestigendes Materialgesetz erweitert und in das Finite Element Programm PERMAS implementiert. In einem einfachen Zug-Torsionsexperiment wurde eine Hohlprobe mit konstanter Torsion und zyklischer Zugbelastung beansprucht, um die neue Implementierung zu verifizieren. Es konnte gezeigt werden, dass die Einspielanalyse gut mit den experimentellen Ergebnissen {\"u}bereinstimmt. Bei Verfestigung lassen sich wesentlich gr{\"o}ßere Sicherheiten nachweisen. Dieses Potential bedarf weiterer experimenteller Absicherung. Parallel dazu ist die Eisnpieltheorie auf fortschrittliche Verfestigungsans{\"a}tze zu erweitern.}, subject = {Zug-Druck-Beanspruchung}, language = {de} } @inproceedings{StaatHeitzerHicken1999, author = {Staat, Manfred and Heitzer, Michael and Hicken, E. F.}, title = {LISA - ein europ{\"a}isches Projekt zur FEM-basierten Traglast- und Einspielanalyse}, year = {1999}, abstract = {Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der Plastizit{\"a}t, die neben ausreichender Verformbarkeit keine einschr{\"a}nkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle f{\"u}r Details der Lastgeschichte und des Stoffverhaltens. Anders als die klassische Behandlung nichtlinearer Probleme der Strukturmechanik f{\"u}hrt die Methode auf Optimierungsprobleme. Diese sind bei realistischen FEM-Modellen sehr groß. Das hat die industrielle Anwendung der Traglast- und Einspielanalysen stark verz{\"o}gert. Diese Situation wird durch das Brite-EuRam Projekt LISA grundlegend ge{\"a}ndert. In LISA entsteht auf der Basis des industriellen FEM-Programms PERMAS ein Verfahren zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen. Damit kann der Betriebsbereich von Komponenten und Bauwerken auf den plastischen Bereich erweitert werden, ohne den Aufwand gegen{\"u}ber elastischen Analysen wesentlich zu erh{\"o}hen. Die beachtlichen Rechenzeitgewinne erlauben Parameterstudien und die Berechnung von Interaktionsdiagrammen, die einen schnellen {\"U}berblick {\"u}ber m{\"o}gliche Betriebsbereiche vermitteln. Es zeigt sich, daß abh{\"a}ngig von der Komponente und ihren Belastungen teilweise entscheidende Sicherheitsgewinne zur Erweiterung der Betriebsbereiche erzielt werden k{\"o}nnen. Das Vorgehen erfordert vom Anwender oft ein gewisses Umdenken. Es werden keine Spannungen berechnet, um damit Sicherheit und Lebensdauer zu interpretieren. Statt dessen berechnet man direkt die gesuchte Sicherheit. Der Post-Prozessor wird nur noch zur Modell- und Rechenkontrolle ben{\"o}tigt. Das Vorgehen ist {\"a}hnlich der Stabilit{\"a}tsanalyse (Knicken, Beulen). Durch namhafte industrielle Projektpartner werden Validierung und die Anwendbarkeit auf eine breite Palette technischer Probleme garantiert. Die ebenfalls in LISA entwickelten Zuverl{\"a}ssigkeitsanalysen sind nichlinear erst auf der Basis direkter Verfahren effektiv m{\"o}glich. Ohne Traglast- und Einspielanalyse ist plastische Strukturoptimierung auch heute kaum durchf{\"u}hrbar. Auf die vorgesehenen Erweiterungen der Werkstoffmodellierung f{\"u}r nichtlineare Verfestigung und f{\"u}r Sch{\"a}digung konnte hier nicht eingegangen werden. Es herrscht ein deutlicher Mangel an Experimenten zum Nachweis der Grenzen zwischen elastischem Einspielen und dem Versagen durch LCF oder durch Ratchetting.}, subject = {Einspielen }, language = {de} } @inproceedings{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, Michael}, title = {Direkte FEM-Berechnung der Tragf{\"a}higkeit hochbeanspruchter passiver Komponenten}, year = {1997}, abstract = {Genaue Kenntnis der Spannungen und Verformungen in passiven Komponenten gewinnt man mit detailierten inelastischen FEM Analysen. Die lokale Beanspruchung l{\"a}ßt sich aber nicht direkt mit einer Beanspruchbarkeit im strukturmechanischen Sinne vergleichen. Konzentriert man sich auf die Frage nach der Tragf{\"a}higkeit, dann vereinfacht sich die Analyse. Im Rahmen der Plastizit{\"a}tstheorie berechnen Traglast- und Einspielanalyse die tragbaren Lasten direkt und exakt. In diesem Beitrag wird eine Implementierung der Traglast- und Einspiels{\"a}tze in ein allgemeines FEM Programm vorgestellt, mit der die Tragf{\"a}higkeit passiver Komponenten direkt berechnet wird. Die benutzten Konzepte werden in Bezug auf die {\"u}bliche Strukturanalyse erl{\"a}utert. Beispiele mit lokal hoher Beanspruchung verdeutlichen die Anwendung der FEM basierten Traglast- und Einspielanalysen. Die berechneten Interaktionsdiagramme geben einen guten {\"U}berblick {\"u}ber die m{\"o}glichen Betriebsbereiche passiver Komponenten. Die Traglastanalyse bietet auch einen strukturmechanischen Zugang zur Kollapslast rißbehafteter Komponenten aus hochz{\"a}hem Material.}, subject = {Finite-Elemente-Methode}, language = {de} } @inproceedings{StaatHeitzerHicken1998, author = {Staat, Manfred and Heitzer, M. and Hicken, E. F.}, title = {LISA, ein europ{\"a}isches Projekt zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen}, year = {1998}, abstract = {Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der Plastizit{\"a}t, die neben ausreichender Verformbarkeit keine einschr{\"a}nkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle f{\"u}r Details der Lastgeschichte und des Stoffverhaltens. Anders als die klassische Behandlung nichtlinearer Probleme der Strukturmechanik f{\"u}hrt die Methode auf Optimierungsprobleme. Diese sind bei realistischen FEM-Modellen sehr groß. Das hat die industrielle Anwendung der Traglast- und Einspielanalysen stark verz{\"o}gert. Diese Situation wird durch das Brite-EuRam Projekt LISA grundlegend ge{\"a}ndert. Die Autoren m{\"o}chten der Europ{\"a}ischen Kommission an dieser Stelle f{\"u}r die F{\"o}rderung ausdr{\"u}cklich danken. In LISA entsteht auf der Basis des industriellen FEM-Programms PERMAS ein Verfahren zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen. Damit kann der Betriebsbereich von Komponenten und Bauwerken auf den plastischen Bereich erweitert werden, ohne den Aufwand gegen{\"u}ber elastischen Analysen wesentlich zu erh{\"o}hen. Die beachtlichen Rechenzeitgewinne erlauben Parameterstudien und die Berechnung von Interaktionsdiagrammen, die einen schnellen {\"U}berblick {\"u}ber m{\"o}gliche Betriebsbereiche vermitteln. Es zeigt sich, daß abh{\"a}ngig von der Komponente und ihren Belastungen teilweise entscheidende Sicherheitsgewinne zur Erweiterung der Betriebsbereiche erzielt werden k{\"o}nnen. Das Vorgehen erfordert vom Anwender oft ein gewisses Umdenken. Es werden keine Spannungen berechnet, um damit Sicherheit und Lebensdauer zu interpretieren. Statt dessen berechnet man direkt die gesuchte Sicherheit. Der Post-Prozessor wird nur noch zur Modell- und Rechenkontrolle ben{\"o}tigt. Das Vorgehen ist {\"a}nhlich der Stabilit{\"a}tsanalyse (Knicken, Beulen). Durch namhafte industrielle Projektpartner werden Validierung und die Anwendbarkeit auf eine breite Palette technischer Probleme garantiert. Die ebenfalls in LISA geplante Zuverl{\"a}ssigkeitsanalyse ist erst auf der Basis direkter Verfahren effektiv m{\"o}glich. Ohne Traglast- und Einspielanalyse ist plastische Strukturoptimierung auch heute kaum durchf{\"u}hrbar.}, subject = {Finite-Elemente-Methode}, language = {de} } @misc{Staat2006, author = {Staat, Manfred}, title = {Technische Mechanik. Vorlesungsmitschrift. Korrigierter Nachdr. der 3. Aufl.}, year = {2006}, abstract = {{\"U}berarbeitete, korrigierte und erg{\"a}nzte Version einer Vorlesungsmitschrift von Sebastian Kr{\"a}mer. 172 S. Inhaltsverzeichnis 0 Einf{\"u}hrung in die Mechanik 1 Statik starrer K{\"o}rper 2 Elastostatik (Festigkeitslehre) 3 Kinematik 4 Kinetik Literatur}, subject = {Technische Mechanik}, language = {de} } @techreport{SiegertBongaertsWagneretal.2022, author = {Siegert, Petra and Bongaerts, Johannes and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Abschlussbericht zum Projekt zur {\"U}berwachung biotechnologischer Prozesse mittels Diacetyl-/Acetoin-Biosensor und Evaluierung von Acetoin-Reduktasen zur Verwendung in Biotransformationen}, address = {Aachen}, organization = {FH Aachen}, pages = {16 Seiten}, year = {2022}, language = {de} } @misc{Schreiber2016, author = {Schreiber, Marc}, title = {Mit Maximum-Entropie das Parsing nat{\"u}rlicher Sprache erlernen}, publisher = {FH Aachen}, address = {Aachen}, pages = {23 Seiten}, year = {2016}, abstract = {F{\"u}r die Verarbeitung von nat{\"u}rlicher Sprache ist ein wichtiger Zwischenschritt das Parsing, bei dem f{\"u}r S{\"a}tze der nat{\"u}rlichen Sprache Ableitungsb{\"a}ume bestimmt werden. Dieses Verfahren ist vergleichbar zum Parsen formaler Sprachen, wie z. B. das Parsen eines Quelltextes. Die Parsing-Methoden der formalen Sprachen, z. B. Bottom-up-Parser, k{\"o}nnen nicht auf das Parsen der nat{\"u}rlichen Sprache {\"u}bertragen werden, da keine Formalisierung der nat{\"u}rlichen Sprachen existiert [3, 12, 23, 30]. In den ersten Programmen, die nat{\"u}rliche Sprache verarbeiten [32, 41], wurde versucht die nat{\"u}rliche Sprache mit festen Regelmengen zu verarbeiten. Dieser Ansatz stieß jedoch schnell an seine Grenzen, da die Regelmenge nicht vollst{\"a}ndig sowie nicht minimal ist und wegen der ben{\"o}tigten Menge an Regeln schwer zu verwalten ist. Die Korpuslinguistik [22] bot die M{\"o}glichkeit, die Regelmenge durch Supervised-Machine-Learning-Verfahren [2] abzul{\"o}sen. Teil der Korpuslinguistik ist es, große Textkorpora zu erstellen und diese mit sprachlichen Strukturen zu annotieren. Zu diesen Strukturen geh{\"o}ren sowohl die Wortarten als auch die Ableitungsb{\"a}ume der S{\"a}tze. Vorteil dieser Methodik ist es, dass repr{\"a}sentative Daten zur Verf{\"u}gung stehen. Diese Daten werden genutzt, um mit Supervised-Machine-Learning-Verfahren die Gesetzm{\"a}ßigkeiten der nat{\"u}rliche Sprachen zu erlernen. Das Maximum-Entropie-Verfahren ist ein Supervised-Machine-Learning-Verfahren, das genutzt wird, um nat{\"u}rliche Sprache zu erlernen. Ratnaparkhi [25] nutzt Maximum-Entropie, um Ableitungsb{\"a}ume f{\"u}r S{\"a}tze der nat{\"u}rlichen Sprache zu erlernen. Dieses Verfahren macht es m{\"o}glich, die nat{\"u}rliche Sprache (abgebildet als Σ∗) trotz einer fehlenden formalen Grammatik zu parsen.}, language = {de} } @techreport{NaglKraft2004, author = {Nagl, Manfred and Kraft, Bodo}, title = {Graphbasierte Werkzeuge zur Unterst{\"u}tzung des konzeptuellen Geb{\"a}ude-Entwurfs : Bericht {\"u}ber den 2. F{\"o}rderzeitraum des Schwerpunktprogramms : DFG-Schwerpunktprogramm 1103 : Vernetzt-kooperative Planungsprozesse im Konstruktiven Ingenieurbau. - Auch unter dem Titel: Neue Software-Werkzeuge zur Unterst{\"u}tzung des konzeptuellen Geb{\"a}udeentwurfs}, year = {2004}, abstract = {Der konstruktive Entwurf wird in derzeitigen CAD-Systemen gut unterst{\"u}tzt, nicht aber der konzeptuelle Geb{\"a}ude-Entwurf. Dieser abstrahiert von konstruktiven Elementen wie Linie, Wand oder Decke, um auf die Konzepte, d.h. die eigentlichen Funktionen, heraus zu arbeiten. Diese abstraktere, funktionale Sichtweise auf ein Geb{\"a}ude ist w{\"a}hrend der fr{\"u}hen Entwurfsphase essentiell, um Struktur und Organisation des gesamten Geb{\"a}udes zu erfassen. Bereits in dieser Phase muss Fachwissen (z. B. rechtliche, {\"o}konomische und technische Bestimmungen) ber{\"u}cksichtigt werden. Im Rahmen des vorliegenden Projekts werden Software-Werkzeuge integriert in industrielle CAD-Systeme entwickelt, die den konzeptuellen Geb{\"a}ude-Entwurf erm{\"o}glichen und diesen gegen Fachwissen pr{\"u}fen. Das Projekt ist in zwei Teile gegliedert. Im Top-Down-Ansatz werden Datenstrukturen und Methoden zur Strukturierung, Repr{\"a}sentation und Evaluation von geb{\"a}udespezifischem Fachwissen erarbeitet. Dieser Teil baut auf den graphbasierten Werkzeugen PROGRES und UPGRADE des Lehrstuhls auf. Der Bottom-Up-Ansatz ist industriell orientiert und hat zum Ziel, das kommerzielle CAD-System ArchiCAD zu erweitern. Hierbei soll der fr{\"u}he, konzeptuelle Geb{\"a}ude-Entwurf in einem CAD-System erm{\"o}glicht werden. Der Entwurf kann dar{\"u}ber hinaus gegen das definierte Fachwissen gepr{\"u}ft werden. Im Rahmen des graphbasierten Top-Down-Ansatzes wurde zun{\"a}chst eine neue Spezifikationsmethode f{\"u}r die Sprache PROGRES entwickelt. Das PROGRES-System erlaubt die Spezifikation von Werkzeugen in deklarativer Form. {\"U}blicherweise wird dom{\"a}nenspezifisches Fachwissen in der PROGRES-Spezifikation codiert, das daraus generierte visuelle Werkzeug stellt dann die entsprechende Funktionalit{\"a}t zur Verf{\"u}gung. Mit dieser Methode sind am Lehrstuhl f{\"u}r Informatik III Werkzeuge f{\"u}r verschie-dene Anwendungsdom{\"a}nen entstanden. In unserem Fall versetzen wir einen Dom{\"a}nen-Experten, z. B. einen erfahrenen Architekten, in die Lage, Fachwissen zur Laufzeit einzugeben, dieses zu evaluieren, abzu{\"a}ndern oder zu erg{\"a}nzen. Im Rahmen der bisherigen Arbeit wurde dazu eine parametrisierte PROGRES-Spezifikation und zwei darauf aufbauende Werkzeuge entwickelt, welche die dynamische Eingabe von geb{\"a}ude-technisch relevantem Fachwissen erlauben und einen graphbasierten, konzeptuellen Geb{\"a}ude-Entwurf erm{\"o}glichen. In diesem konzeptuellen Geb{\"a}ude-Entwurf wird von Raumgr{\"o}ßen und Positionen abstrahiert, um die funktionale Struktur eines Geb{\"a}udes zu beschreiben. Das Fachwissen kann von einem Architekten visuell definiert werden. Es k{\"o}nnen semantische Einheiten, im einfachsten Fall R{\"a}ume, nach verschiedenen Kriterien kategorisiert und klassifiziert werden. Mit Hilfe von Attributen und Relationen k{\"o}nnen die semantischen Einheiten pr{\"a}ziser beschrieben und in Beziehung zueinander gesetzt werden. Die in PROGRES spezifizierten Konsistenz-Analysen erlauben die Pr{\"u}fung eines graphbasierten konzeptuellen Geb{\"a}ude-Entwurfs gegen das dynamisch eingef{\"u}gte Fachwissen. Im zweiten Teil des Forschungsprojekts, dem Bottom-Up-Ansatz, wird das CAD-System ArchiCAD erweitert, um den integrierten konzeptuellen Geb{\"a}ude-Entwurf zu erm{\"o}glichen. Der Architekt erh{\"a}lt dazu neue Entwurfselemente, die Raumobjekte, welche die relevanten semantischen Einheiten w{\"a}hrend der fr{\"u}hen Entwurfsphase repr{\"a}sentieren. Mit Hilfe der Raumobjekte kann der Architekt in ArchiCAD den Grundriss und das Raumprogramm eines Geb{\"a}udes entwerfen, ohne von konstruktiven Details in seiner Kreativit{\"a}t eingeschr{\"a}nkt zu werden. Die Arbeitsweise mit Raumobjekten entspricht dem informellen konzeptuellen Entwurf auf einer Papierskizze und ist daher f{\"u}r den Architekten intuitiv und einfach zu verwenden. Durch die Integration in ArchiCAD ergibt sich eine weitere Unterst{\"u}tzung: Das im Top-Down-Ansatz spezifizierte Fach-wissen wird verwendet, um den konzeptuellen Geb{\"a}ude-Entwurf des Architekten auf Regelverletzungen zu {\"u}berpr{\"u}fen. Entwurfsfehler werden angezeigt. Zum Abschluss des konzeptuellen Geb{\"a}ude-Entwurfs mit Raumobjekten wird durch ein weiteres neu entwickeltes Werkzeug eine initiale Wandstruktur automatisch erzeugt, die als Grundlage f{\"u}r die folgenden konstruktiven Entwurfsphasen dient. Alle beschriebenen Erwei-terungen sind in ArchiCAD integriert, sie sind f{\"u}r den Architekten daher leicht zu erlernen und einfach zu bedienen.}, subject = {CAD}, language = {de} } @article{LeversStaatLaack2011, author = {Levers, A. and Staat, Manfred and Laack, Walter van}, title = {Analyse der Langzeitwirkung der MBST® KernspinResonanzTherapie bei Gonarthrose}, year = {2011}, abstract = {Originalausgabe: Orthop{\"a}dische Praxis Jg. 47. 2011 H. 11; S. 536-543. Mit freundlicher Genehmigung des Verlags Zusammenfassung: Auf der Basis von Patientenabfragen mittels Fragebogen zum Schmerzempfinden und zur Einschr{\"a}nkung bei Aktivit{\"a}ten des allt{\"a}glichen Lebens wird die Langzeitwirkung der MBST® KernspinResonanz-Therapie bei Gonarthrose untersucht. An der Studie nahmen 39 Patienten teil, bei denen die Therapie bis zu vier Jahre zur{\"u}ckliegt. Neben einer Gesamtbetrachtung wird der Erfolg auch in Abh{\"a}ngigkeit von Alter, Geschlecht und sportlicher Aktivit{\"a}t analysiert. Insgesamt weist die Studie auf eine anhaltende Verbesserung des Gesundheitszustands mit zum Teil deutlicher Schmerzlinderung auch noch nach vier Jahren hin, jedoch mit einer leichten Schmerzzunahme gegen Ende des Untersuchungszeitraums von vier Jahren. Eine tendenziell positivere Wirkung bei Frauen, {\"a}lteren Menschen oder auch sportlich nicht-aktiven Patienten l{\"a}sst auf eine m{\"o}gliche Beeinflussung des Erfolgs der Therapie durch ({\"U}ber-)Belastung im Alltag schließen. Ein zus{\"a}tzlich positiver Effekt der Therapie auf die Knochendichte ist ebenfalls denkbar, dies bleibt jedoch offen.}, subject = {Kniegelenkarthrose}, language = {de} }