@article{MolinnusDrinicIkenetal.2021, author = {Molinnus, Denise and Drinic, Aleksander and Iken, Heiko and Kr{\"o}ger, Nadja and Zinser, Max and Smeets, Ralf and K{\"o}pf, Marius and Kopp, Alexander and Sch{\"o}ning, Michael Josef}, title = {Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk}, series = {Biosensors and Bioelectronics}, volume = {183}, journal = {Biosensors and Bioelectronics}, number = {Art. 113204}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2021.113204}, year = {2021}, language = {en} } @article{KoppSchunckGosauetal.2020, author = {Kopp, Alexander and Schunck, Laura and Gosau, Martin and Smeets, Ralf and Burg, Simon and Fuest, Sandra and Kr{\"o}ger, Nadja and Zinser, Max and Krohn, Sebastian and Behbahani, Mehdi and K{\"o}pf, Marius and Lauts, Lisa and Rutkowski, Rico}, title = {Influence of the casting concentration on the mechanical and optical properties of Fa/CaCl2-derived silk fibroin membranes}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18 art. no. 6704}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186704}, year = {2020}, abstract = {In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live-dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes.}, language = {en} } @article{KoppSchmeetsGosauetal.2019, author = {Kopp, Alexander and Schmeets, Ralf and Gosau, Martin and Friedrich, Reinhard E. and Fuest, Sandra and Behbahani, Mehdi and Barbeck, Mike and Rutkowski, Rico and Burg, Simon and Kluwe, Lan and Henningsen, Anders}, title = {Production and Characterization of Porous Fibroin Scaffolds for Regenerative Medical Application}, series = {In Vivo}, volume = {33}, journal = {In Vivo}, number = {3}, issn = {1791-7549}, doi = {10.21873/invivo.11536}, pages = {757 -- 762}, year = {2019}, language = {en} } @article{JanusAchtsnichtTempeletal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Tempel, Laura and Drinic, Aleksaner and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Influence of fibroin membrane composition and curing parameters on the performance of a biodegradable enzymatic biosensor manufactured from Silicon-Free Carbon}, series = {Physica status solidi : pss. A, Applications and materials science}, volume = {220}, journal = {Physica status solidi : pss. A, Applications and materials science}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300 (Print)}, doi = {10.1002/pssa.202300081}, pages = {Artikel 2300081}, year = {2023}, abstract = {Herein, fibroin, polylactide (PLA), and carbon are investigated for their suitability as biocompatible and biodegradable materials for amperometric biosensors. For this purpose, screen-printed carbon electrodes on the biodegradable substrates fibroin and PLA are modified with a glucose oxidase membrane and then encapsulated with the biocompatible material Ecoflex. The influence of different curing parameters of the carbon electrodes on the resulting biosensor characteristics is studied. The morphology of the electrodes is investigated by scanning electron microscopy, and the biosensor performance is examined by amperometric measurements of glucose (0.5-10 mM) in phosphate buffer solution, pH 7.4, at an applied potential of 1.2 V versus a Ag/AgCl reference electrode. Instead of Ecoflex, fibroin, PLA, and wound adhesive are tested as alternative encapsulation compounds: a series of swelling tests with different fibroin compositions, PLA, and Ecoflex has been performed before characterizing the most promising candidates by chronoamperometry. Therefore, the carbon electrodes are completely covered with the particular encapsulation material. Chronoamperometric measurements with H2O2 concentrations between 0.5 and 10 mM enable studying the leakage current behavior.}, language = {en} } @article{JanusAchtsnichtDrinicetal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Drinic, Aleksander and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications}, series = {Applied Research}, journal = {Applied Research}, number = {Accepted manuscript}, publisher = {Wiley-VCH}, issn = {2702-4288 (Print)}, doi = {10.1002/appl.202300102}, pages = {22 Seiten}, year = {2023}, abstract = {In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C.}, language = {en} }