@article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @incollection{KraftKohlMeinecke2024, author = {Kraft, Bodo and Kohl, Philipp and Meinecke, Matthias}, title = {Analyse und Nachverfolgung von Projektzielen durch Einsatz von Natural Language Processing}, series = {KI in der Projektwirtschaft : was ver{\"a}ndert sich durch KI im Projektmanagement?}, booktitle = {KI in der Projektwirtschaft : was ver{\"a}ndert sich durch KI im Projektmanagement?}, editor = {Bernert, Christian and Scheurer, Steffen and Wehnes, Harald}, publisher = {UVK Verlag}, isbn = {978-3-3811-1132-9 (Online)}, doi = {10.24053/9783381111329}, pages = {157 -- 167}, year = {2024}, language = {de} } @article{SchoenrockMuckeltHastermannetal.2024, author = {Schoenrock, Britt and Muckelt, Paul E. and Hastermann, Maria and Albracht, Kirsten and MacGregor, Robert and Martin, David and Gunga, Hans-Christian and Salanova, Michele and Stokes, Maria J. and Warner, Martin B. and Blottner, Dieter}, title = {Muscle stiffness indicating mission crew health in space}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {Article number: 4196}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-024-54759-6}, pages = {13 Seiten}, year = {2024}, abstract = {Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.}, language = {en} } @inproceedings{SchmitzApandiSpillneretal.2024, author = {Schmitz, Annika and Apandi, Shah Eiman Amzar Shah and Spillner, Jan and Hima, Flutura and Behbahani, Mehdi}, title = {Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {29 -- 30}, year = {2024}, abstract = {Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA.}, language = {en} } @book{StaatDigelTrzewiketal.2024, author = {Staat, Manfred and Digel, Ilya and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, title = {Symposium Proceedings; 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {40 Seiten}, year = {2024}, language = {en} } @article{EngelmannSimsekShalabyetal.2024, author = {Engelmann, Ulrich M. and Simsek, Beril and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s24061945}, pages = {Artikel 1945}, year = {2024}, abstract = {Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled N{\´e}el-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.}, language = {en} } @article{KarschuckPoghossianSeretal.2024, author = {Karschuck, Tobias and Poghossian, Arshak and Ser, Joey and Tsokolakyan, Astghik and Achtsnicht, Stefan and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage}, series = {Sensors and Actuators B: Chemical}, volume = {408}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005 (Print)}, doi = {10.1016/j.snb.2024.135530}, pages = {12 Seiten}, year = {2024}, abstract = {Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed.}, language = {en} } @techreport{BarnatArntzBerneckeretal.2024, type = {Working Paper}, author = {Barnat, Miriam and Arntz, Kristian and Bernecker, Andreas and Fissabre, Anke and Franken, Norbert and Goldbach, Daniel and H{\"u}ning, Felix and J{\"o}rissen, J{\"o}rg and Kirsch, Ansgar and Pettrak, J{\"u}rgen and Rexforth, Matthias and Josef, Rosenkranz and Terstegge, Andreas}, title = {Strategische Gestaltung von Studieng{\"a}ngen f{\"u}r die Zukunft: Ein kollaborativ entwickeltes Self-Assessment}, series = {Hochschulforum Digitalisierung - Diskussionspapier}, journal = {Hochschulforum Digitalisierung - Diskussionspapier}, publisher = {Stifterverband f{\"u}r die Deutsche Wissenschaft}, address = {Berlin}, issn = {2365-7081}, pages = {16 Seiten}, year = {2024}, abstract = {Das Diskussionspapier beschreibt einen Prozess an der FH Aachen zur Entwicklung und Implementierung eines Self-Assessment-Tools f{\"u}r Studieng{\"a}nge. Dieser Prozess zielte darauf ab, die Relevanz der Themen Digitalisierung, Internationalisierung und Nachhaltigkeit in Studieng{\"a}ngen zu st{\"a}rken. Durch Workshops und kollaborative Entwicklung mit Studiendekan:innen entstand ein Fragebogen, der zur Reflexion und strategischen Weiterentwicklung der Studieng{\"a}nge dient.}, language = {de} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} }