@inproceedings{TranStaat2021, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength}, series = {Proceedings of UNCECOMP 2021}, booktitle = {Proceedings of UNCECOMP 2021}, isbn = {978-618-85072-6-5}, doi = {10.7712/120221.8041.19047}, pages = {323 -- 338}, year = {2021}, abstract = {A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm.}, language = {en} } @article{HacklNacovKammerlohretal.2021, author = {Hackl, Michael and Nacov, Julia and Kammerlohr, Sandra and Staat, Manfred and Buess, Eduard and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Intratendinous Strain Variations of the Supraspinatus Tendon Depending on Repair Technique: A Biomechanical Analysis Regarding the Cause of Medial Cuff Failure}, series = {The American Journal of Sports Medicine}, volume = {49}, journal = {The American Journal of Sports Medicine}, number = {7}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211006138}, pages = {1847 -- 1853}, year = {2021}, language = {en} } @article{StadlerEmbsDigeletal.2008, author = {Stadler, Andreas M. and Embs, Jan P. and Digel, Ilya and Artmann, Gerhard and Unruh, Tobias and B{\"u}ldt, Georg and Zaccai, Guiseppe}, title = {Cytoplasmic water and hydration layer dynamics in human red blood cells}, series = {Journal of the American Chemical Society. 50 (2008), H. 130}, journal = {Journal of the American Chemical Society. 50 (2008), H. 130}, isbn = {1520-5126}, pages = {16852 -- 16853}, year = {2008}, language = {en} } @book{Laack1999, author = {Laack, Walter van}, title = {Der Schl{\"u}ssel zur Ewigkeit}, publisher = {van Laack}, address = {Aachen}, isbn = {978-3-9805239-4-3}, pages = {285 S.}, year = {1999}, language = {de} } @article{Staat2001, author = {Staat, Manfred}, title = {Cyclic plastic deformation tests to verify FEM-based shakedown analyses}, year = {2001}, abstract = {Fatigue analyses are conducted with the aim of verifying that thermal ratcheting is limited. To this end it is important to make a clear distintion between the shakedown range and the ratcheting range (continuing deformation). As part of an EU-supported research project, experiments were carried out using a 4-bar model. The experiment comprised a water-cooled internal tube, and three insulated heatable outer test bars. The system was subjected to alternating axial forces, superimposed with alternating temperatures at the outer bars. The test parameters were partly selected on the basis of previous shakedown analyses. During the test, temperatures and strains were measured as a function of time. The loads and the resulting stresses were confirmed on an ongoing basis during performance of the test, and after it. Different material models were applied for this incremental elasto-plastic analysis using the ANSYS program. The results of the simulation are used to verify the FEM-based shakedown analysis.}, subject = {Materialerm{\"u}dung}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} } @article{HorbachStaatPerezVianaetal.2020, author = {Horbach, Andreas and Staat, Manfred and Perez-Viana, Daniel and Simmen, Hans-Peter and Neuhaus, Valentin and Pape, Hans-Christoph and Prescher, Andreas and Ciritsis, Bernhard}, title = {Biomechanical in vitro examination of a standardized low-volume tubular femoroplasty}, series = {Clinical Biomechanics}, volume = {80}, journal = {Clinical Biomechanics}, number = {Art. 105104}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.clinbiomech.2020.105104}, year = {2020}, abstract = {Background Osteoporosis is associated with the risk of fractures near the hip. Age and comorbidities increase the perioperative risk. Due to the ageing population, fracture of the proximal femur also proves to be a socio-economic problem. Preventive surgical measures have hardly been used so far. Methods 10 pairs of human femora from fresh cadavers were divided into control and low-volume femoroplasty groups and subjected to a Hayes fall-loading fracture test. The results of the respective localization and classification of the fracture site, the Singh index determined by computed tomography (CT) examination and the parameters in terms of fracture force, work to fracture and stiffness were evaluated statistically and with the finite element method. In addition, a finite element parametric study with different position angles and variants of the tubular geometry of the femoroplasty was performed. Findings Compared to the control group, the work to fracture could be increased by 33.2\%. The fracture force increased by 19.9\%. The used technique and instrumentation proved to be standardized and reproducible with an average poly(methyl methacrylate) volume of 10.5 ml. The parametric study showed the best results for the selected angle and geometry. Interpretation The cadaver studies demonstrated the biomechanical efficacy of the low-volume tubular femoroplasty. The numerical calculations confirmed the optimal choice of positioning as well as the inner and outer diameter of the tube in this setting. The standardized minimally invasive technique with the instruments developed for it could be used in further comparative studies to confirm the measured biomechanical results.}, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Direct FEM Limit and Shakedown Analysis with Uncertain Data}, year = {2000}, abstract = {The structural reliability with respect to plastic collapse or to inadaptation is formulated on the basis of the lower bound limit and shakedown theorems. A direct definition of the limit state function is achieved which permits the use of the highly effective first order reliability methods (FORM) is achieved. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis. The limit state function and its gradient are obtained from a mathematical optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error, leading to highly effective and precise reliability analyses.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{BassamArtmannHescheleretal.2011, author = {Bassam, Rasha and Artmann, Gerhard and Hescheler, J{\"u}rgen and Graef, T. and Temiz Artmann, Ayseg{\"u}l and Porst, Dariusz and Linder, Peter and Kayser, Peter and Arinkin, Vladimir and Gossmann, Matthias and Digel, Ilya}, title = {Alterations in human hemoglobin structure related to red blood cell storage}, year = {2011}, abstract = {The importance of the availability of stored blood or blood cells, respectively, for urgent transfusion cannot be overestimated. Nowadays, blood storage becomes even more important since blood products are used for epidemiological studies, bio-technical research or banked for transfusion purposes. Thus blood samples must not only be processed, stored, and shipped to preserve their efficacy and safety, but also all parameters of storage must be recorded and reported for Quality Assurance. Therefore, blood banks and clinical research facilities are seeking more accurate, automated means for blood storage and blood processing.}, subject = {H{\"a}moglobin}, language = {en} } @article{KnoxBruggemannGossmannetal.2020, author = {Knox, Ronald and Bruggemann, Andrea and Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {Combining physiological relevance and throughput for in vitro cardiac contractility measurement}, series = {Biophysical Journal}, volume = {118}, journal = {Biophysical Journal}, number = {Issue 3, Supplement 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.3104}, pages = {570a}, year = {2020}, abstract = {Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these.}, language = {en} }