@article{BehbahaniProbstMaietal.2010, author = {Behbahani, Mehdi and Probst, M. and Mai, A. and Behr, M. and Tran, L. and Vonderstein, K. and Mottaghy, K.}, title = {Numerical Prediction of Blood Damage in Biomedical Devices}, year = {2010}, language = {en} } @article{BehbahaniTranJockenhoeveletal.2011, author = {Behbahani, Mehdi and Tran, L. and Jockenh{\"o}vel, S. and Behr, M. and Mottaghy, K.}, title = {Numerical prediction of thrombocyte reactions for application to a vascular flow model}, series = {British Journal of Surgery}, volume = {98}, journal = {British Journal of Surgery}, number = {S5}, publisher = {Oxford University Press}, address = {Oxford}, isbn = {1365-2168}, pages = {S17}, year = {2011}, language = {en} } @inproceedings{DuongNguyenStaat2012, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Numerical stability enhancement of modeling hyperelastic materials}, series = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, booktitle = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @incollection{Kotliar2021, author = {Kotliar, Konstantin}, title = {Ocular rigidity: clinical approach}, series = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, booktitle = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, editor = {Pallikaris, I. and Tsilimbaris, M. K. and Dastiridou, A. I.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64422-2}, doi = {10.1007/978-3-030-64422-2_2}, pages = {15 -- 43}, year = {2021}, abstract = {The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications.}, language = {en} } @article{YangKriechbaumerAlbrachtetal.2015, author = {Yang, Peng-Fei and Kriechbaumer, Andreas and Albracht, Kirsten and Sanno, Maximilian and Ganse, Bergita and Koy, Timmo and Shang, Peng and Br{\"u}ggemann, Gert-Peter and M{\"u}ller, Lars Peter and Rittweger, J{\"o}rn}, title = {On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo}, series = {Journal of Biomechanics}, volume = {48}, journal = {Journal of Biomechanics}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2014.12.031}, pages = {456 -- 464}, year = {2015}, language = {en} } @inproceedings{BaaderKellerLehmannetal.2019, author = {Baader, Fabian and Keller, Denis and Lehmann, Raphael and Gerber, Lukas and Reiswich, Martin and Dachwald, Bernd and F{\"o}rstner, Roger}, title = {Operating melting probes for ice penetration under sublimation conditions and in reduced gravity on a sounding rocket}, series = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, booktitle = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, issn = {0379-6566}, pages = {8 Seiten}, year = {2019}, language = {en} } @article{MiciliValterOflazetal.2013, author = {Micili, Serap C. and Valter, Markus and Oflaz, Hakan and Ozogul, Candan and Linder, Peter and F{\"o}ckler, Nicole and Artmann, Gerhard and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l}, title = {Optical coherence tomography : a potential tool to predict premature rupture of fetal membranes}, series = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, volume = {Vol. 227}, journal = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, number = {No. 4}, publisher = {Sage}, address = {London}, issn = {0046-2039 (Print) ; 2041-3033 (E-Journal)}, pages = {393 -- 401}, year = {2013}, language = {en} } @inproceedings{DachwaldMengaliQuartaetal.2007, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A and Macdonald, Malcolm and McInnes, Colin R}, title = {Optical solar sail degradation modelling}, series = {1st International Symposium on Solar Sailing}, booktitle = {1st International Symposium on Solar Sailing}, pages = {1 -- 27}, year = {2007}, abstract = {We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails.}, language = {en} } @article{HorbachStaat2018, author = {Horbach, Andreas and Staat, Manfred}, title = {Optical strain measurement for the modeling of surgical meshes and their porosity}, series = {Current Directions in Biomedical Engineering}, volume = {Band 4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0045}, pages = {181 -- 184}, year = {2018}, abstract = {The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes.}, language = {en} } @article{Dachwald2005, author = {Dachwald, Bernd}, title = {Optimal Solar Sail Trajectories for Missions to the Outer Solar System}, series = {Journal of guidance, control, and dynamics. 28 (2005), H. 6}, journal = {Journal of guidance, control, and dynamics. 28 (2005), H. 6}, isbn = {0162-3192}, pages = {1187 -- 1193}, year = {2005}, language = {en} }