@incollection{HerrmannKearneyRoegeretal.2017, author = {Herrmann, Ulf and Kearney, D. and R{\"o}ger, M. and Prahl, C.}, title = {System performance measurements}, series = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, booktitle = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, publisher = {Woodhead Publishing}, address = {Duxford}, isbn = {978-0-08-100448-7}, doi = {https://doi.org/10.1016/B978-0-08-100447-0.00005-5}, pages = {115 -- 165}, year = {2017}, abstract = {This chapter introduces performance and acceptance testing and describes state-of-the-art tools, methods, and instruments to assess the plant performance or realize plant acceptance testing. The status of the development of standards for performance assessment is given.}, language = {en} } @article{SattlerRoegerSchwarzboezletal.2020, author = {Sattler, Johannes Christoph and R{\"o}ger, Marc and Schwarzb{\"o}zl, Peter and Buck, Reiner and Macke, Ansgar and Raeder, Christian and G{\"o}ttsche, Joachim}, title = {Review of heliostat calibration and tracking control methods}, series = {Solar Energy}, volume = {207}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.solener.2020.06.030}, pages = {110 -- 132}, year = {2020}, abstract = {Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun's position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented.}, language = {en} } @inproceedings{HerrmannGraeterNava2004, author = {Herrmann, Ulf and Graeter, F. and Nava, P.}, title = {Performance of the SKAL-ET Collector Loop at KJC Operating Company}, series = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, booktitle = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, editor = {Ramos, C.}, publisher = {Instituto de Investigaciones Electricas}, address = {[s.l.]}, isbn = {968-6114-18-1}, year = {2004}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, Ricardo Alexander and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2009, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays / G{\"o}ttsche, Joachim ; Hoffschmidt, Bernhard ; Schmitz, Stefan ; Sauerborn, Markus ; Buck, Reiner ; Teufel, Edgar ; Badst{\"u}bner, Karin ; Ifland, David ; Rebholz, Christian}, series = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, journal = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, publisher = {ASME}, address = {New York, NY}, isbn = {9780791843208}, pages = {1 -- 5}, year = {2009}, language = {en} } @inproceedings{MayBreitbachAlexopoulosetal.2019, author = {May, Martin and Breitbach, Gerd and Alexopoulos, Spiros and Latzke, Markus and B{\"a}umer, Klaus and Uhlig, Ralf and S{\"o}hn, Matthias and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Experimental facility for investigations of wire mesh absorbers for pressurized gases}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117547}, pages = {030035-1 -- 030035-9}, year = {2019}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2010, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays}, series = {Journal of solar energy engineering}, volume = {Vol. 132}, journal = {Journal of solar energy engineering}, number = {Iss. 1}, isbn = {0199-6231}, pages = {4 S.}, year = {2010}, language = {en} } @article{GoettscheHoffschmidtAlexopoulosetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Alexopoulos, Spiros and Funke, J. and Schwarzb{\"o}zl, P.}, title = {First Simulation Results for the Hybridization of Small Solar Power Tower Plants}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, journal = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lisbon}, isbn = {978-1-61782-228-5}, pages = {1299 -- 1306}, year = {2008}, language = {en} } @article{HenneckeSchwarzboezlHoffschmidtetal.2007, author = {Hennecke, Klaus and Schwarzb{\"o}zl, Peter and Hoffschmidt, Bernhard and G{\"o}ttsche, Joachim and Koll, G. and Beuter, M. and Hartz, T.}, title = {The solar power tower J{\"u}lich - a solar thermal power plant for test and demonstration of air receiver}, series = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, journal = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, publisher = {Tsinghua Univ. Press}, address = {Beijing}, isbn = {978-7-302-16146-2}, pages = {1749 -- 1753}, year = {2007}, language = {en} } @inproceedings{SchwagerTeixeiraBouraFleschetal.2019, author = {Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Flesch, Robert and Alexopoulos, Spiros and Herrmann, Ulf}, title = {Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, number = {1}, isbn = {978-0-7354-1866-0}, doi = {10.1063/1.5117566}, pages = {030054-1 -- 030054-8}, year = {2019}, language = {en} }