@article{Hillgaertner2010, author = {Hillg{\"a}rtner, Michael}, title = {Normative Regulations}, series = {ECPE Cluster Seminar EMC in Hybrid and Electric Vehicles : 18 May 2010, Fraunhofer Institute Erlangen}, journal = {ECPE Cluster Seminar EMC in Hybrid and Electric Vehicles : 18 May 2010, Fraunhofer Institute Erlangen}, publisher = {European Center for Power Electronics}, address = {N{\"u}rnberg}, pages = {1 CD-ROM}, year = {2010}, language = {en} } @article{HeidenTurekSchoening2011, author = {Heiden, W. and Turek, M. and Sch{\"o}ning, Michael Josef}, title = {TasteIT : Analyzing chemical sensor data using fuzzy logic}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4244-9910-6}, pages = {1 -- 6}, year = {2011}, language = {en} } @article{HeidenTurekSchoening2011, author = {Heiden, W. and Turek, M. and Sch{\"o}ning, Michael Josef}, title = {Analysis of chemical sensor data}, series = {Proceedings of the 4th Russian-German Workshop "Innovation Information Technologies: Theory and practice" : Ufa, Russia, April 8-13, 2011 / eds. Yupsova, Nafisa ...}, journal = {Proceedings of the 4th Russian-German Workshop "Innovation Information Technologies: Theory and practice" : Ufa, Russia, April 8-13, 2011 / eds. Yupsova, Nafisa ...}, publisher = {State Aviation Technical Univ.}, address = {Ufa}, isbn = {978-5-4221-0159-7}, pages = {76 -- 81}, year = {2011}, language = {en} } @article{HartungHusoy1993, author = {Hartung, Frank and Husoy, J. H.}, title = {Wavelet and subband coding of images - A comparative study / Hartung, F. ; Husoy, J. H.}, series = {Mathematical imaging: wavelet applications in signal and image processing : 15 - 16 July 1993, San Diego, California / sponsored and publ. by SPIE - the International Society for Optical Engineering. Andrew F. Laine, chair/ed}, journal = {Mathematical imaging: wavelet applications in signal and image processing : 15 - 16 July 1993, San Diego, California / sponsored and publ. by SPIE - the International Society for Optical Engineering. Andrew F. Laine, chair/ed}, publisher = {SPIE}, address = {Bellingham, Wash.}, isbn = {081941283X}, pages = {242 -- 253}, year = {1993}, language = {en} } @article{HavermannKainumaTakayama2005, author = {Havermann, Marc and Kainuma, M. and Takayama, K.}, title = {Influence of Physical and Geometrical Parameters on Vortex Rings Generated by a Shock Tube / Havermann, M. ; Kainuma, M. ; Takayama, K.}, series = {Non-lethal options enhancing security and stability : 3rd European Symposium on Non-Lethal Weapons, May 10 - 12, 2005, Ettlingen, Germany / ICT, Fraunhofer-Institut Chemische Technologie; European Working Group Non-Lethal Weapons}, journal = {Non-lethal options enhancing security and stability : 3rd European Symposium on Non-Lethal Weapons, May 10 - 12, 2005, Ettlingen, Germany / ICT, Fraunhofer-Institut Chemische Technologie; European Working Group Non-Lethal Weapons}, publisher = {ICT}, address = {Pfinztal}, pages = {getr. Z{\"a}hlung [ca. 600 S.]}, year = {2005}, language = {en} } @article{HavermannMoeglin2005, author = {Havermann, Marc and Moeglin, J.-P.}, title = {ISL's Research on Systems with Controlled Effects for Non-Lethal Applications / Moeglin, J.-P. ; Havermann, M. et al.}, series = {Non-lethal options enhancing security and stability : 3rd European Symposium on Non-Lethal Weapons, May 10 - 12, 2005, Ettlingen, Germany / ICT, Fraunhofer-Institut Chemische Technologie; European Working Group Non-Lethal Weapons}, journal = {Non-lethal options enhancing security and stability : 3rd European Symposium on Non-Lethal Weapons, May 10 - 12, 2005, Ettlingen, Germany / ICT, Fraunhofer-Institut Chemische Technologie; European Working Group Non-Lethal Weapons}, publisher = {ICT}, address = {Pfinztal}, pages = {getr. Z{\"a}hlung [ca. 600 S.]}, year = {2005}, language = {en} } @article{HavermannHaertigReyetal.2001, author = {Havermann, Marc and Haertig, J. and Rey, C. and George, F.}, title = {PIV measurements in Mach 3.5 and 4.5 shock tunnel flow / Haertig, J. ; Havermann, M. ; Rey, C. ; George, F.}, publisher = {-}, year = {2001}, language = {en} } @article{Havermann2006, author = {Havermann, Marc}, title = {Systematic Shock Tube Experiments on Vortex Ring Generation and Propagation / Havermann, M. ; Kainuma, M. ; Takayama, K.}, series = {Shock waves : proceedings of the 25th International Symposium on Shock Waves-ISSW25, July 17 - 22, 2005, Bangalore, India / ed.: G. Jagadeesh}, journal = {Shock waves : proceedings of the 25th International Symposium on Shock Waves-ISSW25, July 17 - 22, 2005, Bangalore, India / ed.: G. Jagadeesh}, publisher = {Universities Pr.}, address = {Hyderabad}, isbn = {978-81-7371571-6}, pages = {1141 S.}, year = {2006}, language = {en} } @article{LustfeldPithanReissel2012, author = {Lustfeld, H. and Pithan, C. and Reißel, Martin}, title = {Metallic electrolyte composites in the framework of the brick-layer model}, series = {Journal of the European Ceramic Society}, volume = {32}, journal = {Journal of the European Ceramic Society}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2011.10.017}, pages = {859 -- 864}, year = {2012}, abstract = {It is well known that the already large dielectric constants of some electrolytes like BaTiO₃ can be enhanced further by adding metallic (e.g. Ni, Cu or Ag) nanoparticles. The enhancement can be quite large, a factor of more than 1000 is possible. The consequences for the properties will be discussed in the present paper applying a brick-layer model (BLM) for calculating dc-resistivities of thin layers and a modified one (PBLM) that includes percolation for calculating dielectric properties of these materials. The PBLM results in an at least qualitative description and understanding of the physical phenomena: This model gives an explanation for the steep increase of the dielectric constant below the percolation threshold and why this increase is connected to a dramatic decrease of the breakdown voltage as well as the ability of storing electrical energy. We conclude that metallic electrolyte composites like BaTiO₃ are not appropriate for energy storage.}, language = {en} } @article{HaselgruberMautnerThiele2010, author = {Haselgruber, Nikolaus and Mautner, Karin and Thiele, Jan}, title = {Usage Space Analysis for Reliability Testing}, series = {Quality and Reliability Engineering International}, volume = {26}, journal = {Quality and Reliability Engineering International}, number = {8}, publisher = {Wiley}, address = {New York}, issn = {1099-1638}, doi = {10.1002/qre.1155}, pages = {877 -- 885}, year = {2010}, abstract = {During the development process of a complex technical product, one widely used and important technique is accelerated testing where the applied stress on a component is chosen to exceed the reference stress, i.e. the stress encountered in field operation, in order to reduce the time to failure. For that, the reference stress has to be known. Since a complex technical product may fail regarding numerous failure modes, stress in general is highly dimensional rather than scalar. In addition, customers use their products individually, i.e. field operation should be described by a distribution rather than by one scalar stress value. In this paper, a way to span the customer usage space is shown. It allows the identification of worst case reference stress profiles in significantly reduced dimensions with minimal loss of information. The application example shows that even for a complex product like a combustion engine, stress information can be compressed significantly. With low measurement effort it turned out that only three reference stress cycles were sufficient to cover a broad range of customer stress variety.}, language = {en} }