@inproceedings{WildCzupallaFoerstner2021, author = {Wild, Dominik and Czupalla, Markus and F{\"o}rstner, Roger}, title = {Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS)}, series = {ICES104: Advances in Thermal Control Technology}, booktitle = {ICES104: Advances in Thermal Control Technology}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine.}, language = {en} } @inproceedings{WellmerChenBraunetal.2007, author = {Wellmer, Georg and Chen, B.-H. and Braun, Carsten and Ballmann, Josef}, title = {Numerical prediction of aeroelastic effects on twin-sting-rig mounted models for rear fuselage and empennage flow investigation in transonic windtunnel}, series = {Proceedings / IFASD 2007, CEAS/AIAA/KTH International Forum on Aeroelasticity and Structural Dynamics, June 18 - 21, 2007, Stockholm, Sweden}, booktitle = {Proceedings / IFASD 2007, CEAS/AIAA/KTH International Forum on Aeroelasticity and Structural Dynamics, June 18 - 21, 2007, Stockholm, Sweden}, publisher = {KTH}, address = {Stockholm}, organization = {Confederation of European Aerospace Societies ; American Institute of Aeronautics and Astronautics, Reston, Va. ; Kungliga Tekniska H{\"o}gskolan, Stockholm}, pages = {1 CD-ROM}, year = {2007}, language = {en} } @inproceedings{WeissAbanteribaEsch2007, author = {Weiss, Alexander and Abanteriba, Sylvester and Esch, Thomas}, title = {Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow}, series = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, booktitle = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {0-7918-4288-6}, doi = {10.1115/FEDSM2007-37387}, pages = {1861 -- 1871}, year = {2007}, abstract = {Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations.}, language = {en} } @inproceedings{WeberTellisDuhovic2016, author = {Weber, Tobias and Tellis, Jane J. and Duhovic, Miro}, title = {Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation}, series = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, booktitle = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, isbn = {978-3-00-053387-7}, pages = {1 -- 7}, year = {2016}, language = {en} } @article{WeberRuffStahl2017, author = {Weber, Tobias and Ruff-Stahl, Hans-Joachim K.}, title = {Advances in Composite Manufacturing of Helicopter Parts}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {4}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {1}, issn = {2374-6793}, doi = {10.15394/ijaaa.2017.1153}, year = {2017}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2019, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, booktitle = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, pages = {1 -- 10}, year = {2019}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2015, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference, Amiens , France}, booktitle = {Proceedings of SAMPE Europe Conference, Amiens , France}, pages = {1 -- 10}, year = {2015}, language = {en} } @article{WeberEnglhardArentetal.2019, author = {Weber, Tobias and Englhard, Markus and Arent, Jan-Christoph and Hausmann, Joachim}, title = {An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates}, series = {Journal of Composite Materials}, volume = {53}, journal = {Journal of Composite Materials}, number = {26-27}, issn = {1530-793X}, doi = {10.1177/0021998319846556}, pages = {3757 -- 3773}, year = {2019}, language = {en} } @article{WeberArentSteffenetal.2017, author = {Weber, Tobias and Arent, Jan-Christoph and Steffen, Lucas and Balvers, Johannes M. and Duhovic, Miro}, title = {Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation}, series = {Journal of Composite Materials}, volume = {51}, journal = {Journal of Composite Materials}, number = {12}, publisher = {Sage}, address = {London}, issn = {1530-793X}, doi = {10.1177/0021998317699868}, pages = {1753 -- 1767}, year = {2017}, language = {en} } @article{WeberArentMuenchetal.2016, author = {Weber, Tobias and Arent, Jan-Christoph and M{\"u}nch, Lukas and Duhovic, Miro and Balvers, Johannes M.}, title = {A fast method for the generation of boundary conditions for thermal autoclave simulation}, series = {Composites Part A}, volume = {88}, journal = {Composites Part A}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-835X}, doi = {10.1016/j.compositesa.2016.05.036}, pages = {216 -- 225}, year = {2016}, abstract = {Manufacturing process simulation enables the evaluation and improvement of autoclave mold concepts early in the design phase. To achieve a high part quality at low cycle times, the thermal behavior of the autoclave mold can be investigated by means of simulations. Most challenging for such a simulation is the generation of necessary boundary conditions. Heat-up and temperature distribution in an autoclave mold are governed by flow phenomena, tooling material and shape, position within the autoclave, and the chosen autoclave cycle. This paper identifies and summarizes the most important factors influencing mold heat-up and how they can be introduced into a thermal simulation. Thermal measurements are used to quantify the impact of the various parameters. Finally, the gained knowledge is applied to develop a semi-empirical approach for boundary condition estimation that enables a simple and fast thermal simulation of the autoclave curing process with reasonably high accuracy for tooling optimization.}, language = {en} }