@inproceedings{HuckPoghossianBuniatyanetal.2014, author = {Huck, Christina and Poghossian, Arshak and Buniatyan, V. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter detection for supporting monitoring and control of biogas processes in agriculture}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {Berlin}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 5}, year = {2014}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, booktitle = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, publisher = {CRC Pr.}, address = {Boca Raton, Fla.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @article{SchwabedalSippelBrandtetal.2018, author = {Schwabedal, Justus T. C. and Sippel, Daniel and Brandt, Moritz D. and Bialonski, Stephan}, title = {Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning}, doi = {10.48550/arXiv.1809.08443}, year = {2018}, abstract = {Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle.}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @book{Laack2000, author = {Laack, Walter van}, title = {Nobody ever dies! / 1. ed.}, publisher = {van Laack}, address = {Aachen}, isbn = {978-3-936624-03-8}, pages = {272 S.}, year = {2000}, language = {en} } @incollection{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Mechanics of soft tissue reactions to textile mesh implants}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_11}, pages = {251 -- 275}, year = {2018}, abstract = {For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment.}, language = {en} } @article{Stulpe2009, author = {Stulpe, Werner}, title = {Self-Adjoint Operator}, series = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, journal = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-70622-9}, pages = {692 -- 697}, year = {2009}, language = {en} } @article{Stulpe2009, author = {Stulpe, Werner}, title = {Unitary Operator}, series = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, journal = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-70622-9}, pages = {807 -- 809}, year = {2009}, language = {en} } @article{Stulpe2009, author = {Stulpe, Werner}, title = {Projection}, series = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, journal = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-70622-9}, pages = {497 -- 499}, year = {2009}, language = {en} } @article{AbouzarPoghossianCherstvyetal.2012, author = {Abouzar, Maryam H. and Poghossian, Arshak and Cherstvy, Andrey G. and Pedraza, Angela M. and Ingebrandt, Sven and Sch{\"o}ning, Michael Josef}, title = {Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100710}, pages = {925 -- 934}, year = {2012}, abstract = {Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface.}, language = {en} }