@article{WilmingBegemannKuhneetal.2013, author = {Wilming, Anja and Begemann, Jens and Kuhne, Stefan and Regestein, Lars and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and B{\"u}chs, Jochen}, title = {Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations}, series = {Biochemical engineering journal}, volume = {Vol. 73}, journal = {Biochemical engineering journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-295X (E-Journal); 1369-703X (Print)}, pages = {29 -- 37}, year = {2013}, language = {en} } @article{WiegandDietrichHerteletal.2013, author = {Wiegand, Sandra and Dietrich, Sascha and Hertel, Robert and Bongaerts, Johannes and Evers, Stefan and Volland, Sonja and Daniel, Rolf and Liesegang, Heiko}, title = {RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation}, series = {BMC genomics}, volume = {Vol. 14}, journal = {BMC genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, pages = {667}, year = {2013}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{VoigtSchroeterJuergenetal.2013, author = {Voigt, Birgit and Schroeter, Rebecca and J{\"u}rgen, Britta and Albrecht, Dirk and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Schweder, Thomas and Hecker, Michael}, title = {The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon}, series = {Proteomics}, volume = {Vol. 13}, journal = {Proteomics}, number = {Iss. 14}, publisher = {Wiley}, address = {Weinheim}, issn = {1615-9861 (E-Journal); 1615-9853 (Print)}, pages = {2140 -- 2146}, year = {2013}, language = {en} } @article{VoigtAlbrechtSieversetal.2015, author = {Voigt, Birgit and Albrecht, Dirk and Sievers, Susanne and Becher, D{\"o}rte and Bongaerts, Johannes and Evers, Stefan and Schweder, Thomas and Maurer, Karl-Heinz and Hecker, Michael}, title = {High-resolution proteome maps of Bacillus licheniformis cells growing in minimal medium}, series = {Proteomics}, volume = {15}, journal = {Proteomics}, number = {15}, publisher = {Wiley}, address = {Weinheim}, issn = {1615-9861}, doi = {10.1002/pmic.201400504}, pages = {2629 -- 2633}, year = {2015}, language = {en} } @article{SchroeterHoffmannVoigtetal.2014, author = {Schroeter, Rebecca and Hoffmann, Tamara and Voigt, Birgit and Meyer, Hanna and Bleisteiner, Monika and Muntel, Jan and J{\"u}rgen, Britta and Albrecht, Dirk and Becher, D{\"o}rte and Lalk, Michael and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Putzer, Harald and Hecker, Michael and Schweder, Thomas and Bremer, Erhard}, title = {Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0080956}, pages = {e80956}, year = {2014}, abstract = {The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.}, language = {en} } @article{ScheeleOertelBongaertsetal.2013, author = {Scheele, Sandra and Oertel, Dan and Bongaerts, Johannes and Evers, Stefan and Hellmuth, Hendrik and Maurer, Karl-Heinz and Bott, Michael and Freudl, Roland}, title = {Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum}, series = {Microbial biotechnology}, journal = {Microbial biotechnology}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1751-7915}, pages = {202 -- 206}, year = {2013}, language = {en} } @article{RachingerBauchStrittmatteretal.2013, author = {Rachinger, Michael and Bauch, Melanie and Strittmatter, Axel and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and Daniel, Rolf and Liebl, Wolfgang and Liesegang, Heiko and Ehrenreich, Armin}, title = {Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis}, series = {Journal of biotechnology}, volume = {Vol. 164}, journal = {Journal of biotechnology}, number = {Iss. 4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, pages = {365 -- 369}, year = {2013}, language = {en} } @article{PolenKraemerBongaertsetal.2005, author = {Polen, T. and Kr{\"a}mer, Marco and Bongaerts, Johannes and Wubbolts, Marcel and Wendisch, V. F.}, title = {The global gene expression response of Escherichia coli to L-phenylalanine}, series = {Journal of biotechnology}, volume = {Vol. 115}, journal = {Journal of biotechnology}, number = {Iss. 3}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, pages = {221 -- 237}, year = {2005}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} }