@article{ReisselBitschMawicketal.2002, author = {Reißel, Martin and Bitsch, G. and Mawick, G. and Tokar, G.}, title = {Transient FEM Simulation of a Door Closing Process and Application to Fatigue / Bitsch, G. ; Mawick, G. ; Reißel, M. ; Tokar, G.}, series = {Proceedings of the 20. CAD-FEM Users Meeting, 2002}, journal = {Proceedings of the 20. CAD-FEM Users Meeting, 2002}, pages = {1 -- 8}, year = {2002}, language = {en} } @article{Reissel1997, author = {Reißel, Martin}, title = {Three-dimensional eddy-current computation using Krylov subspace methods / Reissel, Martin}, series = {IMA Journal of Mathematics Applied in Business and Industry. 8 (1997), H. 2}, journal = {IMA Journal of Mathematics Applied in Business and Industry. 8 (1997), H. 2}, isbn = {1471-678X}, pages = {99 -- 121}, year = {1997}, language = {en} } @article{Reissel1992, author = {Reißel, Martin}, title = {On a transmission boundary-value problem for the time-harmonic Maxwell equations without displacement currents / Martin Reissel}, pages = {19 S.}, year = {1992}, language = {en} } @article{Reissel1993, author = {Reißel, Martin}, title = {On a Transmission Boundary Value Problem for the Time-Harmonic Maxwell Equations without Displacement Currents / Martin Reissel}, series = {SIAM Journal on Mathematical Analysis. 24 (1993), H. 6}, journal = {SIAM Journal on Mathematical Analysis. 24 (1993), H. 6}, isbn = {0036-1410}, pages = {1440 -- 1457}, year = {1993}, language = {en} } @article{MuellerHirschfeldLambertzetal.2014, author = {M{\"u}ller, Martin and Hirschfeld, Julian and Lambertz, Rita and Schulze Lohoff, Andreas and Lustfeld, Hans and Pfeifer, Heinz and Reißel, Martin}, title = {Validation of a novel method for detecting and stabilizing malfunctioning areas in fuel cell stacks}, series = {Journal of power sources}, volume = {272}, journal = {Journal of power sources}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2755 (E-Journal); 0378-7753 (Print)}, doi = {10.1016/j.jpowsour.2014.08.045}, pages = {225 -- 232}, year = {2014}, abstract = {In this paper a setup for detecting malfunctioning areas of MEAs in fuel cell stacks is described. Malfunctioning areas generate electric cross currents inside bipolar plates. To exploit this we suggest bipolar plates consisting not of two but of three layers. The third one is a highly conducting layer and segmented such that the cross currents move along the segments to the surface of the stack where they can be measured by an inductive sensor. With this information a realistic model can be used to detect the malfunctioning area. Furthermore the third layer will prevent any current inhomogeneity of a malfunctioning cell to spread to neighbouring cells in the stack. In this work the results of measurements in a realistic cell setup will be compared with the results obtained in simulation studies with the same configuration. The basis for the comparison is the reliable characterisation of the electrical properties of the cell components and the implication of these results into the simulation model. The experimental studies will also show the limits in the maximum number of segments, which can be used for a reliable detection of cross currents.}, language = {en} } @article{LustfeldPithanReissel2012, author = {Lustfeld, H. and Pithan, C. and Reißel, Martin}, title = {Metallic electrolyte composites in the framework of the brick-layer model}, series = {Journal of the European Ceramic Society}, volume = {32}, journal = {Journal of the European Ceramic Society}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2011.10.017}, pages = {859 -- 864}, year = {2012}, abstract = {It is well known that the already large dielectric constants of some electrolytes like BaTiO₃ can be enhanced further by adding metallic (e.g. Ni, Cu or Ag) nanoparticles. The enhancement can be quite large, a factor of more than 1000 is possible. The consequences for the properties will be discussed in the present paper applying a brick-layer model (BLM) for calculating dc-resistivities of thin layers and a modified one (PBLM) that includes percolation for calculating dielectric properties of these materials. The PBLM results in an at least qualitative description and understanding of the physical phenomena: This model gives an explanation for the steep increase of the dielectric constant below the percolation threshold and why this increase is connected to a dramatic decrease of the breakdown voltage as well as the ability of storing electrical energy. We conclude that metallic electrolyte composites like BaTiO₃ are not appropriate for energy storage.}, language = {en} } @article{LustfeldHirschfeldReisseletal.2011, author = {Lustfeld, H. and Hirschfeld, J. A. and Reißel, Martin and Steffen, B.}, title = {Enhancement of precision and reduction of measuring points in tomographic reconstructions}, series = {Physics Letters A}, volume = {375}, journal = {Physics Letters A}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, pages = {1167 -- 1171}, year = {2011}, language = {en} } @article{KronhardtAlexopoulosReisseletal.2014, author = {Kronhardt, Valentina and Alexopoulos, Spiros and Reißel, Martin and Sattler, Johannes, Christoph and Hoffschmidt, Bernhard and H{\"a}nel, Matthias and Doerbeck, Till}, title = {High-temperature thermal storage system for solar tower power plants with open-volumetric air receiver simulation and energy balancing of a discretized model}, series = {Energy procedia}, volume = {49}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal) ; 1876-6102 (Print)}, doi = {10.1016/j.egypro.2014.03.094}, pages = {870 -- 877}, year = {2014}, abstract = {This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants.}, language = {en} } @inproceedings{KronhardtAlexopoulosReisseletal.2015, author = {Kronhardt, Valentina and Alexopoulos, Spiros and Reißel, Martin and Latzke, Markus and Rendon, C. and Sattler, Johannes, Christoph and Herrmann, Ulf}, title = {Simulation of operational management for the Solar Thermal Test and Demonstration Power Plant J{\"u}lich using optimized control strategies of the storage system}, series = {Energy procedia}, booktitle = {Energy procedia}, issn = {1876-6102}, pages = {1 -- 6}, year = {2015}, language = {en} } @article{KleefeldReissel2011, author = {Kleefeld, A. and Reißel, Martin}, title = {The Levenberg-Marquardt method applied to a parameter estimation problem arising from electrical resistivity tomography}, series = {Applied Mathematics and Computation}, volume = {217}, journal = {Applied Mathematics and Computation}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0096-3003}, pages = {4490 -- 4501}, year = {2011}, language = {en} }