@article{MoseleyHalamekKrameretal.2014, author = {Moseley, Fiona and Halamek, Jan and Kramer, Friederike and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible CNOT logic gate realized in a flow system}, series = {Analyst}, volume = {139}, journal = {Analyst}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5528 (E-Journal) ; 0003-2654 (Print)}, doi = {10.1039/C4AN00133H}, pages = {1839 -- 1842}, year = {2014}, abstract = {An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD⁺ and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{HonarvarfardGamellaPoghossianetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer}, series = {Applied Materials Today}, volume = {9}, journal = {Applied Materials Today}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-9407}, doi = {10.1016/j.apmt.2017.08.003}, pages = {266 -- 270}, year = {2017}, abstract = {An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte-insulator-semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{SchiffelsPinkenburgScheldenetal.2013, author = {Schiffels, Johannes and Pinkenburg, Olaf and Schelden, Maximilian and Aboulnaga, El-Hussiny A. A. and Baumann, Marcus and Selmer, Thorsten}, title = {An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from cupriavidus necator in Escherichia coli}, series = {PLOS one. 2013}, journal = {PLOS one. 2013}, publisher = {Public Library of Science}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0068812}, year = {2013}, language = {en} } @article{SchuetzSchoeningSchrothetal.2000, author = {Sch{\"u}tz, S. and Sch{\"o}ning, Michael Josef and Schroth, P. and Weißbecker, B. and Kordos, P. and L{\"u}th, H. and Hummel, Hans E.}, title = {An insectbased BioFET as a bioelectronic nose}, series = {Sensors and Actuators B. 65 (2000), H. 1-3}, journal = {Sensors and Actuators B. 65 (2000), H. 1-3}, isbn = {0925-4005}, pages = {291 -- 295}, year = {2000}, language = {en} } @article{PoghossianSchoeningSchrothetal.2001, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Schroth, P. and Simonis, A. and L{\"u}th, H.}, title = {An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime}, series = {Sensors and Actuators B. 76 (2001), H. 1-3}, journal = {Sensors and Actuators B. 76 (2001), H. 1-3}, isbn = {0925-4005}, pages = {519 -- 526}, year = {2001}, language = {en} } @article{MuribTranCeunincketal.2012, author = {Murib, Mohammed S. and Tran, Anh Quang and Ceuninck, Ward de and Sch{\"o}ning, Michael Josef and Nesladek, Milos and Serpeng{\"u}zel, Ali and Wagner, Patrick}, title = {Analysis of an optical biosensor based on elastic light scattering from diamond-, glass-, and sapphire microspheres}, series = {Physica Status Solidi A}, volume = {209}, journal = {Physica Status Solidi A}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100795}, pages = {1804 -- 1810}, year = {2012}, abstract = {Deoxyribonucleic acid (DNA) and protein recognition are now standard tools in biology. In addition, the special optical properties of microsphere resonators expressed by the high quality factor (Q-factor) of whispering gallery modes (WGMs) or morphology dependent resonances (MDRs) have attracted the attention of the biophotonic community. Microsphere-based biosensors are considered as powerful candidates to achieve label-free recognition of single molecules due to the high sensitivity of their WGMs. When the microsphere surface is modified with biomolecules, the effective refractive index and the effective size of the microsphere change resulting in a resonant wavelength shift. The transverse electric (TE) and the transverse magnetic (TM) elastic light scattering intensity of electromagnetic waves at 600 and 1400 nm are numerically calculated for DNA and unspecific binding of proteins to the microsphere surface. The effect of changing the optical properties was studied for diamond (refractive index 2.34), glass (refractive index 1.50), and sapphire (refractive index 1.75) microspheres with a 50 µm radius. The mode spacing, the linewidth of WGMs, and the shift of resonant wavelength due to the change in radius and refractive index, were analyzed by numerical simulations. Preliminary results of unspecific binding of biomolecules are presented. The calculated shift in WGMs can be used for biomolecules detection.}, language = {en} } @article{HeidenTurekSchoening2011, author = {Heiden, W. and Turek, M. and Sch{\"o}ning, Michael Josef}, title = {Analysis of chemical sensor data}, series = {Proceedings of the 4th Russian-German Workshop "Innovation Information Technologies: Theory and practice" : Ufa, Russia, April 8-13, 2011 / eds. Yupsova, Nafisa ...}, journal = {Proceedings of the 4th Russian-German Workshop "Innovation Information Technologies: Theory and practice" : Ufa, Russia, April 8-13, 2011 / eds. Yupsova, Nafisa ...}, publisher = {State Aviation Technical Univ.}, address = {Ufa}, isbn = {978-5-4221-0159-7}, pages = {76 -- 81}, year = {2011}, language = {en} } @article{MourzinaErmelenkoYoshinobuetal.2003, author = {Mourzina, Y. G. and Ermelenko, Y. E. and Yoshinobu, T. and Vlasov, Y. and Iwasaki, H. and Sch{\"o}ning, Michael Josef}, title = {Anionselective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and suphate ions}, series = {Sensors and Actuators B. 91 (2003), H. 1-3}, journal = {Sensors and Actuators B. 91 (2003), H. 1-3}, isbn = {0925-4005}, pages = {32 -- 38}, year = {2003}, language = {en} } @article{PoghossianSchultzeSchoening2003, author = {Poghossian, Arshak and Schultze, J. W. and Sch{\"o}ning, Michael Josef}, title = {Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids}, series = {Electrochimica Acta. 48 (2003), H. 20-22}, journal = {Electrochimica Acta. 48 (2003), H. 20-22}, pages = {3289 -- 3297}, year = {2003}, language = {en} } @article{PilasYaziciSelmeretal.2018, author = {Pilas, Johanna and Yazici, Y. and Selmer, Thorsten and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Application of a portable multi-analyte biosensor for organic acid determination in silage}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18051470}, pages = {12 Seiten}, year = {2018}, abstract = {Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at -21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at -21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.}, language = {en} }