@article{KuehnHaugnerStaatetal.2004, author = {K{\"u}hn, Raoul-Roman and Haugner, Werner and Staat, Manfred and Sponagel, Stefan}, title = {A Two Phase Mixture Model based on Bone Observation}, year = {2004}, abstract = {An optimization method is developed to describe the mechanical behaviour of the human cancellous bone. The method is based on a mixture theory. A careful observation of the behaviour of the bone material leads to the hypothesis that the bone density is controlled by the principal stress trajectories (Wolff's law). The basic idea of the developed method is the coupling of a scalar value via an eigenvalue problem to the principal stress trajectories. On the one hand this theory will permit a prediction of the reaction of the biological bone structure after the implantation of a prosthesis, on the other hand it may be useful in engineering optimization problems. An analytical example shows its efficiency.}, subject = {Knochen}, language = {en} } @article{StaatHeitzerLangetal.2005, author = {Staat, Manfred and Heitzer, M. and Lang, H. and Wirtz, K.}, title = {Direct Finite Element Route for Design-by-Analysis of Pressure Components}, series = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 1}, journal = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 1}, isbn = {0308-0161}, pages = {61 -- 67}, year = {2005}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels}, series = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 3}, journal = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 3}, isbn = {0308-0161}, pages = {217 -- 225}, year = {2005}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels}, year = {2005}, abstract = {Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Direct finite element route for design-by-analysis of pressure components}, year = {2005}, abstract = {In the new European standard for unfired pressure vessels, EN 13445-3, there are two approaches for carrying out a Design-by-Analysis that cover both the stress categorization method (Annex C) and the direct route method (Annex B) for a check against global plastic deformation and against progressive plastic deformation. This paper presents the direct route in the language of limit and shakedown analysis. This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for mechanical and thermal actions. One observation from the examples is that the so-called 3f (3Sm) criterion fails to be a reliable check against progressive plastic deformation. Precise conditions are given, which greatly restrict the applicability of the 3f criterion.}, subject = {Einspielen }, language = {en} } @article{StaatVu2006, author = {Staat, Manfred and Vu, Khoi Duc}, title = {Limit loads of circumferentially flawed pipes and cylindrical vessels under internal pressure}, series = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, journal = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, isbn = {0308-0161}, pages = {188 -- 196}, year = {2006}, language = {en} } @misc{Staat2006, author = {Staat, Manfred}, title = {Engineering Mechanics. Lecture Notes. 2nd edition, translation of the 3rd corrected and extended German edition of "Technische Mechanik"}, year = {2006}, abstract = {English translation of the corrected lectures notes of Sebastian Kr{\"a}mer. Contents 0 Introduction to Mechanics 1 Statics of Rigid Bodies 2 Elastostatics (Strength of Materials) 3 Kinematics 4 Kinetics Literature}, subject = {Technische Mechanik}, language = {en} } @misc{StaatBarry2006, author = {Staat, Manfred and Barry, Steve}, title = {Continuum Mechanics with an Introduction to the Finite Element Method / Steve Barry; Manfred Staat. With extensions by Manfred Staat.}, year = {2006}, abstract = {Contents: 1 Introduction 2 One Dimensional Continuum Mechanics 3 Tensors 4 Three Dimensional Stress and Strain 5 Conservation Laws 6 Contiunuum Modelling 7 Plain Problems 8 Questions 9 Reference Information}, subject = {Technische Mechanik}, language = {en} } @inproceedings{Staat2006, author = {Staat, Manfred}, title = {Problems and chances for probabilistic fracture mechanics in the analysis of steel pressure boundary reliability. - {\"U}berarb. Ausg.}, year = {2006}, abstract = {In: Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an Advisory Group Meeting held in J{\"u}lich, 21-24 November 1994. - Vienna , 1996. - Seite: 43 - 55 IAEA-TECDOC-920 Abstract: It is shown that the difficulty for probabilistic fracture mechanics (PFM) is the general problem of the high reliability of a small population. There is no way around the problem as yet. Therefore what PFM can contribute to the reliability of steel pressure boundaries is demon­strated with the example of a typical reactor pressure vessel and critically discussed. Although no method is distinguishable that could give exact failure probabilities, PFM has several addi­tional chances. Upper limits for failure probability may be obtained together with trends for design and operating conditions. Further, PFM can identify the most sensitive parameters, improved control of which would increase reliability. Thus PFM should play a vital role in the analysis of steel pressure boundaries despite all shortcomings.}, subject = {Bruchmechanik}, language = {en} } @article{StaatVu2007, author = {Staat, Manfred and Vu, Duc-Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels. Part I: Axial defects}, series = {Engineering Fracture Mechanics. 74 (2007), H. 3}, journal = {Engineering Fracture Mechanics. 74 (2007), H. 3}, isbn = {0013-7944}, pages = {431 -- 450}, year = {2007}, language = {en} }