@article{BialonskiCaronSchloenetal.2016, author = {Bialonski, Stephan and Caron, David A. and Schloen, Julia and Feudel, Ulrike and Kantz, Holger and Moorthi, Stefanie D.}, title = {Phytoplankton dynamics in the Southern California Bight indicate a complex mixture of transport and biology}, series = {Journal of Plankton Research}, volume = {38}, journal = {Journal of Plankton Research}, number = {4}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1464-3774}, doi = {10.1093/plankt/fbv122}, pages = {1077 -- 1091}, year = {2016}, abstract = {The stimulation and dominance of potentially harmful phytoplankton taxa at a given locale and time are determined by local environmental conditions as well as by transport to or from neighboring regions. The present study investigated the occurrence of common harmful algal bloom (HAB) taxa within the Southern California Bight, using cross-correlation functions to determine potential dependencies between HAB taxa and environmental factors, and potential links to algal transport via local hydrography and currents. A simulation study, in which Lagrangian particles were released, was used to assess travel times due to advection by prevailing ocean currents in the bight. Our results indicate that transport of some taxa may be an important mechanism for the expansion of their distributions into other regions, which was supported by mean travel times derived from our simulation study and other literature on ocean currents in the Southern California Bight. In other cases, however, phytoplankton dynamics were rather linked to local environmental conditions, including coastal upwelling events. Overall, our study shows that complex current patterns in the Southern California Bight may contribute significantly to the formation and expansion of HABs in addition to local environmental factors determining the spatiotemporal dynamics of phytoplankton blooms.}, language = {en} } @article{RingersBialonskiEgeetal.2023, author = {Ringers, Christa and Bialonski, Stephan and Ege, Mert and Solovev, Anton and Hansen, Jan Niklas and Jeong, Inyoung and Friedrich, Benjamin M. and Jurisch-Yaksi, Nathalie}, title = {Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia}, series = {eLife}, volume = {12}, journal = {eLife}, publisher = {eLife Sciences Publications}, issn = {2050-084X}, doi = {10.7554/eLife.77701}, pages = {27 Seiten}, year = {2023}, abstract = {Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.}, language = {en} } @article{BialonskiSchindlerElgeretal.2008, author = {Bialonski, Stephan and Schindler, K. and Elger, C. E. and Lehnertz, Klaus}, title = {Lateralized characteristics of the evolution of EEG correlation during focal onset seizures: a mechanism to prevent secondary generalization?}, series = {Epilepsia}, volume = {49}, journal = {Epilepsia}, issn = {0013-9580}, pages = {11 -- 11}, year = {2008}, abstract = {Rationale: Previous studies [Topolnik et al., Cereb Cortex 2003; 13: 883; Schindler et al., Brain 2007; 130: 65] indicate that the termination of focal onset seizures may be causally related to an increase of global neuronal correlation during the second half of the seizures. This increase was observed to occur earlier in complex partial seizures than in secondarily generalized seizures. We here address the question whether such an increase of neuronal correlation prior to seizure end is indeed a global phenomenon, involving both hemispheres or whether there are side-specific differences. Methods: We analyzed 20 focal onset seizures (10 complex partial, 10 secondarily generalized seizures) recorded in 13 patients who underwent presurgical evaluation of focal epilepsies of different origin. EEG was recorded intracranially from bilaterally implanted subdural strip and intrahippocampal depth electrodes. Utilizing a moving window approach, we investigated the evolution of the maximum cross correlation for all channel combinations during seizures. For each moving window the mean value of the maximum cross correlation (MCC) between all electrode contacts was computed separately for each hemisphere. After normalization of seizure durations, MCC values of the ipsi- and contralateral hemisphere for all seizures were determined. Results: We observed that the MCC of the contralateral hemisphere in complex partial seizures increased during the first half of the seizure, whereas, for the same time interval, the MCC of the ipsilateral hemisphere even declined below the level of the pre-seizure period. In contrast, no significant differences between both hemispheres could be observed for secondarily generalized seizures where both hemispheres showed a simultaneous increase of MCC during the second half of the seizures. The level of MCC for the contralateral hemisphere was higher for complex partial seizures than for secondarily generalized seizures during the first half of the seizure. Conclusions: Our findings indicate that there are indeed lateralized differences in the evolution of global neuronal correlation during complex partial and secondarily generalized seizures. The observed contralateral increase of neuronal correlation during complex partial seizures might indicate an emerging self-organizing mechanism for preventing the spread of seizure activity.}, language = {en} } @article{BialonskiWellmerElgeretal.2006, author = {Bialonski, Stephan and Wellmer, J{\"o}rg and Elger, Christian E. and Lehnertz, Klaus}, title = {Interictal focus localization in neocortical lesional epilepsies with synchronization cluster analysis}, series = {Epilepsia}, volume = {47}, journal = {Epilepsia}, issn = {0013-9580}, pages = {36}, year = {2006}, language = {en} } @book{Bialonski2012, author = {Bialonski, Stephan}, title = {Inferring complex networks from time series of dynamical systems: Pitfalls, misinterpretations, and possible solutions}, publisher = {Universit{\"a}ts- und Landesbibliothek Bonn}, address = {Bonn}, pages = {Online-Ausgabe (III, 135 S. : Ill., graph. Darst.)}, year = {2012}, language = {en} } @article{KuhnertBialonskiNoenningetal.2013, author = {Kuhnert, Marie-Therese and Bialonski, Stephan and Noenning, Nina and Mai, Heinke and Hinrichs, Hermann and Helmstaedter, Christoph and Lehnertz, Klaus}, title = {Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks}, series = {Plos one}, volume = {8}, journal = {Plos one}, number = {11}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0080273}, pages = {e80273}, year = {2013}, abstract = {Learning- and memory-related processes are thought to result from dynamic interactions in large-scale brain networks that include lateral and mesial structures of the temporal lobes. We investigate the impact of incidental and intentional learning of verbal episodic material on functional brain networks that we derive from scalp-EEG recorded continuously from 33 subjects during a neuropsychological test schedule. Analyzing the networks' global statistical properties we observe that intentional but not incidental learning leads to a significantly increased clustering coefficient, and the average shortest path length remains unaffected. Moreover, network modifications correlate with subsequent recall performance: the more pronounced the modifications of the clustering coefficient, the higher the recall performance. Our findings provide novel insights into the relationship between topological aspects of functional brain networks and higher cognitive functions.}, language = {en} } @article{BialonskiLehnertz2006, author = {Bialonski, Stephan and Lehnertz, Klaus}, title = {Identifying phase synchronization clusters in spatially extended dynamical systems}, series = {Physical Review E}, volume = {74}, journal = {Physical Review E}, number = {5}, issn = {2470-0053}, doi = {10.1103/PhysRevE.74.051909}, pages = {051909}, year = {2006}, language = {en} } @article{GeierBialonskiElgeretal.2015, author = {Geier, Christian and Bialonski, Stephan and Elger, Christian E. and Lehnertz, Klaus}, title = {How important is the seizure onset zone for seizure dynamics?}, series = {Seizure}, volume = {25}, journal = {Seizure}, issn = {1059-1311}, doi = {10.1016/j.seizure.2014.10.013}, pages = {160 -- 166}, year = {2015}, language = {en} } @incollection{BialonskiLehnertz2013, author = {Bialonski, Stephan and Lehnertz, Klaus}, title = {From time series to complex networks: an overview}, series = {Recent Advances in Predicting and Preventing Epileptic Seizures: Proceedings of the 5th International Workshop on Seizure Prediction}, booktitle = {Recent Advances in Predicting and Preventing Epileptic Seizures: Proceedings of the 5th International Workshop on Seizure Prediction}, isbn = {978-981-4525-36-7}, doi = {10.1142/9789814525350_0010}, pages = {132 -- 147}, year = {2013}, abstract = {The network approach towards the analysis of the dynamics of complex systems has been successfully applied in a multitude of studies in the neurosciences and has yielded fascinating insights. With this approach, a complex system is considered to be composed of different constituents which interact with each other. Interaction structures can be compactly represented in interaction networks. In this contribution, we present a brief overview about how interaction networks are derived from multivariate time series, about basic network characteristics, and about challenges associated with this analysis approach.}, language = {en} } @article{BialonskiHorstmannLehnertz2010, author = {Bialonski, Stephan and Horstmann, Marie-Therese and Lehnertz, Klaus}, title = {From brain to earth and climate systems: Small-world interaction networks or not?}, series = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, volume = {20}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, number = {1}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {1089-7682}, doi = {10.1063/1.3360561}, pages = {013134}, year = {2010}, abstract = {We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations, we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with the commonly used time series analysis based approaches to network characterization.}, language = {en} }